Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
基本信息
- 批准号:8715283
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAluminum OxideArchitectureAreaBenchmarkingBody FluidsBrainCeramicsCharacteristicsChargeChemicalsChronicComplexCustomDepositionDevelopmentDevicesDimensionsEffectivenessElectrodesElectronicsEncapsulatedEnvironmentExtravasationFailureForeign BodiesGeometryGoldHumanImplantInjection of therapeutic agentIonsLasersLightLongevityMeasuresMedical DeviceMetalsMethodsMetricMonitorNeurosciencesOperative Surgical ProceduresPerformancePhasePlasmaPolymersProceduresProcessProductionPropertyProtocols documentationRF coilResearchRiskSchemeSemiconductorsSimulateSiteSmall Business Innovation Research GrantSorting - Cell MovementStagingStructureSurfaceSystemTechniquesTechnologyTestingUtahWaterWireless TechnologyWorkatomic layer depositionbiomaterial compatibilitybrain machine interfacecombatelectric impedanceelectrical propertyfollow-upimplantable deviceimplantationimprovedin vivomanufacturing processmicrosystemsnervous system disorderneural stimulationneuroprosthesisnext generationnovelparyleneparylene Cpublic health relevancerelating to nervous systemresponsesuccess
项目摘要
DESCRIPTION (provided by applicant): A range of neurological diseases are now being researched or treated using fully implantable electronic systems to either record or modulate brain activity in humans. These implants are currently being protected using polymer coatings that envelop the implant and help keep body fluids away from the sensitive electronics. Brain implants with complex three-dimensional geometries, like the Utah Electrode Array (UEA) shown in the figure, provide a challenge for current encapsulation techniques. Parylene has been the gold standard for encapsulation of neural and biomedical implants in general due to its well-suited combination of biocompatibility, electrical properties and chemical inertness. However recording capabilities of long-term neural implants (>6 months) encapsulated with Parylene show signs of degradation. To combat this problem Blackrock Microsystems proposes a novel bi-layer encapsulation scheme that combines Plasma Assisted Atomic Layer Deposited (PA-ALD) alumina layer underneath the Parylene layer. This encapsulation scheme, novel to biomedical field, will retain all the advantages of Parylene while utilizing vastly superior dielecric properties of underlying ALD alumina layer to create a much longer lasting and more electrically stable biomedical implants. This bi-layer encapsulation scheme may be seamlessly incorporated into our existing fabrication process flow for our flagship product, the UEA. The bi-layer The UEA with integrated electronics encapsulation method will work on different surfaces (metal, semiconductor, polymer, ceramic) and on devices with integrated wireless components making it ideal for coating any complex medical device intended for long term implant. The project has 4 specific aims: Specific Aim 1: Optimize an ALD alumina/Parylene bi-layer encapsulation scheme and compare performance with Parylene-only encapsulation on test devices. Specific Aim 2: Develop etch methods to selectively expose active electrode sites on UEAs coated with optimized ALD alumina/Parylene bi-layer. Specific Aim 3: Evaluate charge injection/impedance characteristics of ALD alumina/Parylene bi-layer coated UEAs. Specific Aim 4: Comparison of in vivo performance of ALD alumina/Parylene bi-layer coated UEAs to Parylene-only coated UEAs. Our preliminary results with Parylene and alumina coated planar interdigitated electrode (IDE) test structures are very promising in support of the proposed work. We have shown that the bi-layer encapsulation yields more stable leakage current, and stable impedance (with <5% change) at 67 ¿C for about 5 months (approximately equivalent to 40 months at 37 ¿C). This superior performance of bi-layer encapsulation suggests its potential usefulness for chronic implants with complex surface geometries. At the end of the Phase I 'Lab to Marketplace' SBIR project, Blackrock expects to have developed protocols and standards to transform this research from its current early-stage lab setting into a commercial-grade manufacture process.
描述(由申请人提供):目前正在研究或治疗一系列神经系统疾病,使用完全植入式电子系统记录或调节人类大脑活动。这些植入物目前正在使用聚合物涂层进行保护,这些涂层包裹植入物并帮助保持体液远离敏感的电子设备。具有复杂三维几何形状的脑植入物,如图中所示的犹他州电极阵列(UEA),为当前的封装技术提供了挑战。由于其生物相容性、电气性能和化学惰性的完美结合,聚对二甲苯一直是神经和生物医学植入物封装的金标准。然而,用聚对二甲苯封装的长期神经植入物(>6个月)的记录能力显示出退化的迹象。为了解决这个问题,Blackrock Microsystems提出了一种新的双层封装方案,将等离子体辅助原子层沉积(PA-ALD)氧化铝层结合在Parylene层下面。这种封装方案对于生物医学领域来说是新颖的,将保留Parylene的所有优点,同时利用下层ALD氧化铝层的非常优越的上级介电性质来产生更持久和更电稳定的生物医学植入物。这种双层封装方案可以无缝地结合到我们的旗舰产品UEA的现有制造工艺流程中。双层具有集成电子封装方法的UEA将在不同表面(金属、半导体、聚合物、陶瓷)和具有集成无线组件的设备上工作,使其成为涂覆任何用于长期植入的复杂医疗设备的理想选择。该项目有4个具体目标:具体目标1:优化ALD氧化铝/Parylene双层封装方案,并在测试设备上与仅Parylene封装进行性能比较。具体目标2:开发蚀刻方法,以选择性地暴露涂覆有优化ALD氧化铝/聚对二甲苯双层的UEA上的活性电极位点。具体目标3:评价ALD氧化铝/聚对二甲苯双层涂层UEA的电荷注入/阻抗特性。具体目标4:ALD氧化铝/聚对二甲苯双层涂层UEA与仅聚对二甲苯涂层UEA的体内性能比较。 我们的初步结果与聚对二甲苯和氧化铝涂层的平面叉指电极(IDE)的测试结构是非常有前途的支持所提出的工作。我们已经证明,双层封装产生更稳定的漏电流,以及在67 ℃下约5个月(约相当于37 ℃下40个月)的稳定阻抗(变化<5%)。双层封装的这种上级性能表明其对于具有复杂表面几何形状的慢性植入物的潜在有用性。在第一阶段“实验室到市场”SBIR项目结束时,贝莱德预计将制定协议和标准,将这项研究从目前的早期实验室环境转变为商业级制造过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajmohan Bhandari其他文献
Rajmohan Bhandari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajmohan Bhandari', 18)}}的其他基金
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
An implantable chronic 128 channel macro and micro ECoG system with integrated recording, stimulation, and impedance measuring capabilities
植入式慢性 128 通道宏观和微观 ECoG 系统,具有集成记录、刺激和阻抗测量功能
- 批准号:
9085458 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
- 批准号:
8877517 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8997542 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8720477 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8453715 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8523542 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8617312 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8729033 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Development and Commercialization of Next Generation of Neural Microelectrode Arr
下一代神经微电极Arr的开发和商业化
- 批准号:
8250324 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:














{{item.name}}会员




