Exploring tooth survival using Bayesian spatial models
使用贝叶斯空间模型探索牙齿存活率
基本信息
- 批准号:8699584
- 负责人:
- 金额:$ 17.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAddressAdultAdvanced DevelopmentAgeAreaBasic ScienceBayesian ModelingCenters for Disease Control and Prevention (U.S.)ClinicalClinical ResearchComplexDataData SetData SourcesDatabasesDentalDental General PracticeDental HygieneDental InsuranceDental cariesDependenceDevelopmentDiabetes MellitusDiseaseDisease MarkerDisease ProgressionEquilibriumEvaluationEventExhibitsFutureGenderGoalsHealthJudgmentKnowledgeLeadLiteratureLocationLongevityLongitudinal StudiesMeasuresMedicalMethodologyMethodsModelingMonitorOral cavityPainPatientsPerformancePeriodontal DiseasesPopulationProbabilityPrognostic MarkerPublic HealthQuality of lifeRaceRecordsResearchResearch DesignResearch PersonnelRiskRisk AssessmentRisk EstimateRisk FactorsSelection CriteriaSmoking StatusStatistical MethodsStatistical ModelsStructureSurvival AnalysisSystemTestingTimeTooth DiseasesTooth LossTooth structureUniversitiesVisioncostcost effectivedemographicsdisabilitydisorder preventioneffective therapyevidence baseexperiencefollow-uphazardinterestlongitudinal databasenovelnovel strategiesoutcome forecastpublic health relevanceresponsesimulationtime usetreatment planninguser friendly software
项目摘要
DESCRIPTION (provided by applicant): Exploring tooth survival using Bayesian spatial models Caries and severe periodontal disease eventually lead to tooth loss, and this remains a major public health burden in the US. Future dental treatment plans will benefit from development of advanced statistical methods to integrate efficient risk assessment and short-term prediction of tooth loss. Dental datasets come with many interesting statistical challenges which severely limit the potential of currently available methods. In addition to tooth-within-mouth clustering, the times to events are spatially dependent, non-stationary (varying with tooth-locations), and experience heavy censoring. These factors also complicate the interpretation of clinical findings, which are needed at the conditional (subject-level) and the marginal (population) levels. Currently available statistical methods might handle some, but not all of these within an unified paradigm. Goals: Using a Bayesian framework, the proposed study will assess and monitor dental disease status of a population of interest and identify covariates associated with tooth- loss leading to efficient short-term prediction. Subjects: The statistical methods will be initially evaluated on a dataset of about 100 dentate subjects from the McGuire and Nunn data who were monitored at a private dental practice in the Houston area for about 16 years. For generalizability, the methods will be tested on a 4-year longitudinal database consisting of about 16,500 patients collected at Creighton University. Study design: A clustered-longitudinal study design with time to event endpoint comprises the databases that recorded age, gender, race, complete restorative and periodontal records with follow-up, smoking status, diabetes status, oral hygiene, and other essential parameters. Significance: The current project will provide new knowledge to unravel the complex covariate-response relationship that determines tooth loss, and can be easily generalized to other dental datasets. The long-term goal is to be able to achieve accurate predictive inference on tooth survival enabling dental practitioners to develop cost-effective dental treatment plans.
描述(由申请人提供):使用贝叶斯空间模型龋齿和严重牙周疾病探索牙齿生存,最终导致牙齿脱落,这仍然是美国的主要公共卫生负担。未来的牙科治疗计划将受益于高级统计方法的开发,以整合有效的风险评估和短期牙齿脱落的预测。牙科数据集带来了许多有趣的统计挑战,这些挑战严重限制了当前可用方法的潜力。除了口腔内聚类外,事件的时代在空间依赖,非平稳(随牙齿分离而变化),并经历了重度检查。这些因素也使对条件(主题级)和边际(人口)水平所需的临床发现的解释变得复杂。当前可用的统计方法可能会处理一些,但并非全部在统一范式中。目标:使用贝叶斯框架,拟议的研究将评估和监测感兴趣的人群的牙齿疾病状况,并确定与牙齿损失相关的协变量,从而导致有效的短期预测。受试者:统计方法最初将在McGuire和Nunn数据的大约100名牙齿受试者的数据集上进行评估,这些数据在休斯顿地区的私人牙科实践中进行了监测约16年。为了概括性,该方法将在4年的纵向数据库中进行测试,该数据库由Creighton University收集的约16,500名患者组成。研究设计:一个群集的纵向研究设计,其时间为事件终点的时间包括记录年龄,性别,种族,完整恢复性和牙周记录的数据库,具有随访,吸烟状态,糖尿病状态,口腔卫生和其他必要参数。意义:当前的项目将提供新的知识,以揭示决定牙齿脱落的复杂协变量 - 响应关系,并且很容易将其推广到其他牙科数据集。长期目标是能够对牙齿存活获得准确的预测推断,从而使牙科从业人员能够制定具有成本效益的牙科治疗计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dipankar Bandyopadhyay其他文献
Dipankar Bandyopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dipankar Bandyopadhyay', 18)}}的其他基金
A pragmatic risk index evaluating the elderly with comorbidity for oral health event times
评估患有合并症的老年人口腔健康事件时间的实用风险指数
- 批准号:
10593634 - 财政年份:2022
- 资助金额:
$ 17.31万 - 项目类别:
Sex/Gender influences on periodontal disease and diabetes: A population science approach, with software
性别/性别对牙周病和糖尿病的影响:人口科学方法与软件
- 批准号:
10531704 - 财政年份:2022
- 资助金额:
$ 17.31万 - 项目类别:
Spatiotemporal models for periodontal disease monitoring and recall frequencies
牙周病监测和召回频率的时空模型
- 批准号:
9321599 - 财政年份:2015
- 资助金额:
$ 17.31万 - 项目类别:
Spatiotemporal models for periodontal disease monitoring and recall frequencies
牙周病监测和召回频率的时空模型
- 批准号:
8983525 - 财政年份:2015
- 资助金额:
$ 17.31万 - 项目类别:
Exploring tooth survival using Bayesian spatial models
使用贝叶斯空间模型探索牙齿存活率
- 批准号:
8827320 - 财政年份:2014
- 资助金额:
$ 17.31万 - 项目类别:
Exploring tooth survival using Bayesian spatial models
使用贝叶斯空间模型探索牙齿存活率
- 批准号:
9195676 - 财政年份:2014
- 资助金额:
$ 17.31万 - 项目类别:
Robust Transition Models for the Analysis of Longitudinal Drinking Outcomes
用于分析纵向饮酒结果的稳健转变模型
- 批准号:
8787586 - 财政年份:2011
- 资助金额:
$ 17.31万 - 项目类别:
Robust spatial models for clustered periodontal data
牙周聚类数据的稳健空间模型
- 批准号:
8319854 - 财政年份:2011
- 资助金额:
$ 17.31万 - 项目类别:
相似国自然基金
用于急性出血控制的硅酸钙复合海绵的构建及其促凝血性能和机制研究
- 批准号:32301097
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
- 批准号:82300739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代谢工程化MSC胞外囊泡靶向调控巨噬细胞线粒体动力学改善急性肾损伤的作用及机制研究
- 批准号:32371426
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DUSP2介导自噬调控气管上皮细胞炎症在急性肺损伤中的机制研究
- 批准号:82360379
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超声射频信号神经回路策略模型定量肌肉脂肪化评估慢加急性肝衰竭预后
- 批准号:82302221
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 17.31万 - 项目类别:
Determining medications associated with drug-induced pancreatic injury through novel pharmacoepidemiology techniques that assess causation
通过评估因果关系的新型药物流行病学技术确定与药物引起的胰腺损伤相关的药物
- 批准号:
10638247 - 财政年份:2023
- 资助金额:
$ 17.31万 - 项目类别:
TIER-PALLIATIVE CARE: A population-based care delivery model to match evolving patient needs and palliative care services for community-based patients with heart failure or cancer
分级姑息治疗:基于人群的护理提供模式,以满足不断变化的患者需求,并为社区心力衰竭或癌症患者提供姑息治疗服务
- 批准号:
10880994 - 财政年份:2023
- 资助金额:
$ 17.31万 - 项目类别:
Identification of gene variants mediating the behavioral and physiological response to THC
鉴定介导 THC 行为和生理反应的基因变异
- 批准号:
10660808 - 财政年份:2023
- 资助金额:
$ 17.31万 - 项目类别: