Spatiotemporal models for periodontal disease monitoring and recall frequencies
牙周病监测和召回频率的时空模型
基本信息
- 批准号:9321599
- 负责人:
- 金额:$ 37.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-25 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgeAlgorithmsAmericanBasic ScienceClinicalCollaborationsComputer softwareComputersConsensusDataData AnalysesData SetDatabasesDentalDental CareDental HygieneDental InsuranceDental OfficesDependenceDeteriorationDevelopmentDiabetes MellitusDisease ProgressionEvaluationExhibitsFrequenciesFutureGenderGoalsInstitutesInstitutionLinear ModelsLocationLongitudinal StudiesMeasuresMedicalMethodologyMethodsMinnesotaModelingMonitorNational Institute of Dental and Craniofacial ResearchNormalcyOralOral cavityOral healthPatient riskPatientsPearPerformancePeriodontal DiseasesPoliciesPrognostic MarkerPublic HealthRaceRecommendationRecordsResearchResearch DesignResearch PersonnelResourcesRisk AssessmentRisk FactorsScheduleServicesSideSiteSmoking StatusStatistical MethodsStatistical ModelsTooth DiseasesTooth LossTooth structureTranslationsUncertaintyVisitbasecheckup examinationclinical practicecostcost effectivecost effectivenessdisorder preventiondisorder riskeducation researcheffective therapyevidence baseexpectationfollow-uphigh riskindividual patientinsightlongitudinal databasenovelnovel strategiesoral careoutcome forecastpersonalized medicinepublic health relevancesemiparametricsoundspatiotemporaltime intervaltooltreatment effecttreatment planninguser friendly software
项目摘要
DESCRIPTION (provided by applicant): Spatiotemporal models for periodontal disease monitoring and recall frequencies Tooth loss from periodontal disease (PD) remains a major public health burden in the US. With the rising cost of dental insurance premiums, future professional dental treatment plans will seek to prioritize patients based on their risk of disease
and spend more resources monitoring and treating high-risk patients. Hence, there is a need to develop appropriate statistical models and tools for efficient risk assessment of PD, short-term prognosis, and periodontal recall intervals leading to cost-effectiveness of dental treatment plans. Dental datasets present many interesting statistical challenges (non-stationarity, non-normality, spatial dependence, non-random missingness, confounding by indication, huge cluster size, etc), which severely limit the potential of currently-available software (such as Patterson's EagleSoft(r), etc) loaded into the chair- side computer of a periodontist. Currently available statistical software might handle some, but not all of these challenges within a unified paradigm. Goals: The proposed study will develop statistical tools to (a) characterize risk factors
for PD progression, (b) rapidly and efficiently indentify changes in a patient's PD status, (c) use
short-term predictions to guide periodontal recall decisions, and (d) develop user-friendly software to implement these methods. Subjects: The statistical methods will be developed using a rich 8-year longitudinal database from the HealthPartners HMO, consisting of about 15,000 patients with follow-ups. Available data and study design: A clustered- longitudinal (CL) study design comprises the databases that recorded data for age, gender, race, complete restorative and periodontal records with follow-up, smoking status, diabetes status, oral hygiene, and other essential parameters. Significance: The potential translation to dental clinical practice for this project is strong because it will provide dental practitioners with evidence-based criteria to guid 'personalized' periodontal recalls and treatment decisions. The impact generated is expected to be far- reaching, and the long-term goal would incorporate these new methods into existing chair-side dental software leading to development of cost-effective treatment dental plans with prudent expectations.
描述(由申请人提供):牙周病监测和召回频率的时空模型牙周病(PD)引起的牙齿丢失在美国仍然是一个主要的公共卫生负担。随着牙科保险费的上涨,未来的专业牙科治疗计划将寻求根据患者的疾病风险来确定优先顺序
并投入更多资源监测和治疗高危患者。因此,有必要开发适当的统计模型和工具,以有效地评估PD、短期预后和牙周回忆间隔的风险,从而导致牙科治疗计划的成本效益。牙科数据集提出了许多有趣的统计挑战(非平稳性、非正态、空间相关性、非随机缺失、指示混淆、巨大的簇大小等),这严重限制了当前可用的软件(如Patterson的EagleSoft(R)等)加载到牙周科医生的椅子端计算机中的潜力。目前可用的统计软件可能会在一个统一的范例内处理一些但不是所有这些挑战。目标:拟议的研究将开发统计工具,以(A)确定风险因素
对于PD进展,(B)快速有效地识别患者PD状态的变化,(C)使用
短期预测以指导牙周召回决定,以及(D)开发用户友好的软件来实施这些方法。研究对象:统计方法将使用来自HealthPartners HMO的一个丰富的8年纵向数据库来开发,该数据库由大约15,000名有随访的患者组成。可获得的数据和研究设计:纵向成组(CL)研究设计包括记录年龄、性别、种族、完整的修复体和牙周记录以及随访、吸烟状况、糖尿病状况、口腔卫生和其他基本参数的数据库。意义:这个项目有可能转化为牙科临床实践,因为它将为牙科从业者提供基于证据的标准,以指导‘个性化’牙周召回和治疗决策。预计产生的影响将是深远的,长期目标是将这些新方法纳入现有的椅子端牙科软件,从而开发出具有成本效益的治疗牙科计划,并保持谨慎的期望。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dipankar Bandyopadhyay其他文献
Dipankar Bandyopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dipankar Bandyopadhyay', 18)}}的其他基金
A pragmatic risk index evaluating the elderly with comorbidity for oral health event times
评估患有合并症的老年人口腔健康事件时间的实用风险指数
- 批准号:
10593634 - 财政年份:2022
- 资助金额:
$ 37.32万 - 项目类别:
Sex/Gender influences on periodontal disease and diabetes: A population science approach, with software
性别/性别对牙周病和糖尿病的影响:人口科学方法与软件
- 批准号:
10531704 - 财政年份:2022
- 资助金额:
$ 37.32万 - 项目类别:
Spatiotemporal models for periodontal disease monitoring and recall frequencies
牙周病监测和召回频率的时空模型
- 批准号:
8983525 - 财政年份:2015
- 资助金额:
$ 37.32万 - 项目类别:
Exploring tooth survival using Bayesian spatial models
使用贝叶斯空间模型探索牙齿存活率
- 批准号:
8699584 - 财政年份:2014
- 资助金额:
$ 37.32万 - 项目类别:
Exploring tooth survival using Bayesian spatial models
使用贝叶斯空间模型探索牙齿存活率
- 批准号:
8827320 - 财政年份:2014
- 资助金额:
$ 37.32万 - 项目类别:
Exploring tooth survival using Bayesian spatial models
使用贝叶斯空间模型探索牙齿存活率
- 批准号:
9195676 - 财政年份:2014
- 资助金额:
$ 37.32万 - 项目类别:
Robust spatial models for clustered periodontal data
牙周聚类数据的稳健空间模型
- 批准号:
8319854 - 财政年份:2011
- 资助金额:
$ 37.32万 - 项目类别:
Robust Transition Models for the Analysis of Longitudinal Drinking Outcomes
用于分析纵向饮酒结果的稳健转变模型
- 批准号:
8787586 - 财政年份:2011
- 资助金额:
$ 37.32万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Research Grant














{{item.name}}会员




