A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
基本信息
- 批准号:8734495
- 负责人:
- 金额:$ 41.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAmericanBradykinesiaClinicalCodeCommunitiesComplementComplexComputer softwareCustomDataDevelopmentDiseaseDyskinetic syndromeDystoniaEarly DiagnosisEssential TremorFreezingFutureGaitGenerationsGoalsHealth Care SectorHealth ProfessionalHome environmentInvoluntary MovementsLeadLearning ModuleLeftLower ExtremityMachine LearningMethodsMetricMiniaturizationMonitorMotorMovement DisordersNatureNeurologicNeurologyOutcomeParkinson DiseaseParkinsonian DisordersPatient MonitoringPatient Self-ReportPatientsPerformancePersonsPhasePopulationProcessProductivityQuality of lifeQuestionnairesResearchResearch InfrastructureResearch PersonnelScientistSeveritiesSignal TransductionSmall Business Innovation Research GrantSolutionsSurfaceSystemTechnologyTechnology TransferTestingTimeTrainingTremorVideo RecordingWireless TechnologyWorkWritingadvanced systembasebrain behaviorcare deliveryclinical carecostdata acquisitiondesigndisorder controleffectiveness researchflexibilityhandheld mobile devicehuman subjectimprovedinnovationknowledge basemotor disordernervous system disordernovel therapeuticsprototypepublic health relevanceresearch studyresponsesensorsignal processingsoftware developmenttool
项目摘要
DESCRIPTION (provided by applicant): The overall objective of this SBIR project is to develop a pre-commercial prototype system capable of continuously monitoring involuntary movement disorders from a wide spectrum of neurological conditions. The impact of this innovation will enhance the availability of advanced brain and behavior research tools [PA- 11-134] by providing a continuous means of tracking the presence and severity of movement disorders during normal daily activities. This project will transform our unique movement disorder recognition algorithms into custom software that analyzes movement disorders for specific neurological conditions. The information obtained from body worn sensors will provide an accurate and objective means for assessing the complex and changeable nature of movement disorders. This goal cannot by realized using the current method of self-report questionnaires. The research strategy for Phase I will establish the merit and feasibility of this
effort by developing an Application Generation (AG) software platform using a framework of configurable signal processing modules to generate custom applications for movement disorder analysis (Aim 1). This approach reduces the effort and enhances the flexibility of designing and testing software solutions for these applications. The AG Platform will be developed using C++ software to implement signal processing and machine-learning software modules that operate within a knowledge-based framework that we have previously developed. In Aim 2 we will utilize the AG platform to generate movement disorder analysis software to evaluate a challenging test-case application: freezing-of-gait in Parkinson's disease (PD). The goal is to attain performance metrics for freezing that are comparable to those we have achieved for tremor and dyskinesia in previous efforts. Phase II will refine the capabilities of the AG platform developed
in Phase I. We will augment it with the means to automatically design and train the machine learning algorithms, improve the user-interface, and provide options for viewing and summarizing the results. The improved AG platform will be used to develop customized disorder-analysis software that encompasses the full complement of movement disorders associated with PD (e.g. dystonia, bradykinesia, Parkinsonian gait, tremor, dyskinesia), as well as for other neurological condition, such as Essential Tremor (ET). Firmware will be developed for each custom application to efficiently integrate the analytic software with our existing Trigno wireless sensor data acquisition hardware, which needs to be streamlined for this application. This combined system will be evaluated under research use-case scenarios in Neurology. Phase II will deliver an ambulatory Movement Disorder Monitoring system that not only succeeds in providing state-of-the-art monitoring solutions for PD and Essential Tremor, but has proven technology to develop monitoring solutions for a wide variety of neurological conditions. Future development will transfer this technology to a clinical version of this system.
描述(由申请人提供):该SBIR项目的总体目标是开发一种商业化前的原型系统,能够连续监测各种神经系统疾病的不自主运动障碍。这项创新的影响将通过提供一种持续跟踪正常日常活动中运动障碍的存在和严重程度的方法,提高先进的大脑和行为研究工具的可用性[PA- 11-134]。该项目将把我们独特的运动障碍识别算法转化为定制软件,分析特定神经系统疾病的运动障碍。从身体佩戴的传感器获得的信息将为评估运动障碍的复杂性和多变性提供准确和客观的手段。这一目标无法通过使用目前的自我报告问卷的方法来实现。 第一阶段的研究策略将确定这一点的优点和可行性
通过使用可配置的信号处理模块的框架开发应用生成(AG)软件平台,以生成用于运动障碍分析的定制应用(Aim 1),这种方法减少了为这些应用程序设计和测试软件解决方案的工作量并增强了灵活性。AG平台将使用C++软件开发,以实现在我们之前开发的基于知识的框架内运行的信号处理和机器学习软件模块。在目标2中,我们将利用AG平台生成运动障碍分析软件,以评估一个具有挑战性的测试案例应用:帕金森病(PD)的步态冻结。我们的目标是获得与我们在以前的努力中获得的震颤和运动障碍相当的冻结性能指标。 第二阶段将完善开发的AG平台的功能
在第一阶段我们将通过自动设计和训练机器学习算法的方法来增强它,改进用户界面,并提供查看和总结结果的选项。改进后的AG平台将用于开发定制的疾病分析软件,该软件涵盖与PD相关的运动障碍(例如,肌张力障碍、运动迟缓、帕金森步态、震颤、运动障碍)以及其他神经系统疾病(如原发性震颤(ET))的完整补充。将为每个定制应用开发固件,以有效地将分析软件与我们现有的Trigno无线传感器数据采集硬件集成,这需要为该应用进行简化。该组合系统将在神经病学的研究用例场景下进行评价。第二阶段将提供一个动态运动障碍监测系统,不仅成功地为PD和原发性震颤提供最先进的监测解决方案,而且已经证明了为各种神经系统疾病开发监测解决方案的技术。未来的开发将把这项技术转移到该系统的临床版本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gianluca De Luca其他文献
Gianluca De Luca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gianluca De Luca', 18)}}的其他基金
SpeechSense: An Interactive Sensor Platform for Speech Therapy
SpeechSense:用于言语治疗的交互式传感器平台
- 批准号:
10256832 - 财政年份:2022
- 资助金额:
$ 41.79万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
9321913 - 财政年份:2015
- 资助金额:
$ 41.79万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
9046217 - 财政年份:2015
- 资助金额:
$ 41.79万 - 项目类别:
Subvocal Speech for Augmentative and Alternative Communication
用于增强性和替代性交流的默声语音
- 批准号:
9130174 - 财政年份:2015
- 资助金额:
$ 41.79万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
8521782 - 财政年份:2013
- 资助金额:
$ 41.79万 - 项目类别:
A Wireless-Sensor System for Reliable Recordings during Vigorous Muscle Activitie
无线传感器系统可在剧烈肌肉活动期间进行可靠记录
- 批准号:
8392830 - 财政年份:2012
- 资助金额:
$ 41.79万 - 项目类别:
A Wireless Sensor System for Reliable Recordings During Exercise
用于运动期间可靠记录的无线传感器系统
- 批准号:
8978255 - 财政年份:2012
- 资助金额:
$ 41.79万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 41.79万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 41.79万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 41.79万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 41.79万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 41.79万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 41.79万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 41.79万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 41.79万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 41.79万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 41.79万 - 项目类别:
Research Grant














{{item.name}}会员




