Subvocal Speech for Augmentative and Alternative Communication
用于增强性和替代性交流的默声语音
基本信息
- 批准号:9130174
- 负责人:
- 金额:$ 71.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAlgorithmsAndroidArticulatorsAugmentative and Alternative CommunicationCellular PhoneCommunicationCommunication impairmentCommunications MediaCommunitiesComputer softwareComputersCustomDataData AggregationDevelopmentDevicesDiseaseElectrolarynxEncapsulatedEngineeringEvaluationFaceFacial MusclesFutureGoalsHandHealthHome environmentHydrogelsIndividualJointsLaryngectomyLeadMaintenanceMethodsModelingMotorMuscleNational Institute on Deafness and Other Communication DisordersNeckOperating SystemOperative Surgical ProceduresOral cavityPatientsPerformancePersonsPhasePilot ProjectsPositioning AttributeQuality of lifeResearchRiskRunningSamplingSignal TransductionSiteSkinSmall Business Innovation Research GrantSpeechSpeech DisordersSpeech Recognition SoftwareStreamSurfaceSystemSystems DevelopmentTechnologyTestingUser-Computer InterfaceVocabularyVocabulary TestVoice ProsthesesWireless TechnologyWorkalternative communicationbasecommunication devicedata acquisitiondesignhandheld mobile devicehuman subjectimprovedinnovationmobile computingnew technologynovelprogramsprototypesensorsignal processingspeech recognitionuser-friendlyvocalization
项目摘要
DESCRIPTION (provided by applicant): This Phase II SBIR is prompted by the need for more effective Augmentative and Alternative Communication (AAC) devices for persons unable to communicate through vocalization. The project follows our preliminary work, which convincingly demonstrated that surface electromyographic (sEMG) signals recorded from speech articulation muscles can provide a new and effective form of communication without vocalization. Because sEMG-based speech recognition does not rely on acoustic excitation of the vocal tract, it is readily applicable to recognizing subvocal (i.e. mouthed) speech. Subvocal speech is therefore an obvious alternative form of communication for patients with laryngectomy. The goal of this project is to deliver a pre-commercial, wearable, subvocal speech recognition (SSR) system operating on an Android mobile device (Smartphone) that can provide non-speakers with a laryngectomy the ability to produce hands-free, intelligible communication in the home, community, or over the phone. The project is well positioned for direct Phase II development. Proof-of- principal and reduced-risk have been achieved on two fronts: i) wireless sensor designs have been successfully implemented in a rudimentary prototype that improves the task of recording sEMG signals from 8 articulatory muscles of the face and neck; and ii) the most advanced SSR engine to date has been formulated to achieve accurate recognition of subvocal continuous speech from a 2000 word vocabulary tested on unimpaired speakers as well as from 2 people with laryngectomy. Phase II will advance these technologies by reducing the requisite sensor set to just facial muscle sites, which will be integrated into a pre-commercial device for use by non-speakers with a laryngectomy. Aim 1 will consolidate the individual sEMG sensors into a conformable facial interface and combine the acquired signals into a data stream for Bluetooth connectivity to the Android device running the SSR software. The resulting data acquisition system will be encapsulated, bench-tested, and evaluated on subjects with a laryngectomy. Aim 2 will create an advanced SSR engine for laryngectomy users that will reduce the requisite number of sensors from 8, to a sub-set of 4 on the face, while attaining a recognition performance for 1000 words at an error rate less than 10%. The impact of this innovation is that it provides laryngectomy users with an alternative form of speech that a) overcomes the limitations of current automated speech recognition (ASR) systems that are microphone dependent, b) is hands-free compared to electrolarynx technologies requiring handheld contact, c) does not suffer from poor intelligibility or the need for surgical interventio and maintenance as with current voice prostheses, and d) is readily adaptable as a man-machine interface for AAC devices.
描述(由申请人提供):第二阶段SBIR是由于需要为无法通过发声进行交流的人提供更有效的增强和替代通信(AAC)设备而促成的。该项目遵循我们的初步工作,令人信服地证明,从语音发音肌肉记录的表面肌电信号可以提供一种新的、有效的交流形式,而不需要发声。由于基于表面肌电信号的语音识别不依赖于声道的声激励,因此它很容易适用于识别亚声(即嘴巴)语音。因此,对于喉切除术的患者来说,亚声言语是一种明显的替代沟通方式。该项目的目标是提供一种在Android移动设备(智能手机)上运行的预商用、可穿戴的亚声语音识别(SSR)系统,该系统可以为非说话者提供在家庭、社区或电话中进行免提、可理解的交流的能力。该项目处于良好的位置,可以直接进行二期开发。已经在两个方面实现了原则证明和降低的风险:i)无线传感器设计已经成功地在一个基本的原型中实施,该原型改进了记录面部和颈部8个关节肌肉的sEMG信号的任务;以及ii)迄今为止最先进的SSR引擎已经制定,以实现对2000个单词的连续语音的准确识别,这些词汇来自对未受损的说话者以及2名喉部切除术患者的测试。第二阶段将通过将必要的传感器设置减少到仅限于面部肌肉部位来推进这些技术,这些传感器将被集成到商业化前的设备中,供接受喉切除术的非扬声器使用。AIM 1将把单个表面肌电信号传感器整合到一个可协调的面部界面中,并将采集到的信号合并到数据流中,以便将蓝牙连接到运行SSR软件的Android设备。由此产生的数据采集系统将被封装、台架测试,并在喉部切除的受试者身上进行评估。AIM 2将为喉切除用户创建一个先进的SSR引擎,该引擎将把面部所需的传感器数量从8个减少到4个,同时实现对1000个单词的识别性能,错误率低于10%。这一创新的影响在于,它为喉切除用户提供了另一种语音形式,a)克服了当前依赖于麦克风的自动语音识别(ASR)系统的限制,b)与需要手持接触的电喉技术相比是免提的,c)不像目前的语音假体那样遭受较差的可理解性或手术干预和维护的需要,以及d)容易地被适应为AAC设备的人机界面。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of sEMG sensors and algorithms for silent speech recognition.
- DOI:10.1088/1741-2552/aac965
- 发表时间:2018-08
- 期刊:
- 影响因子:4
- 作者:Meltzner GS;Heaton JT;Deng Y;De Luca G;Roy SH;Kline JC
- 通讯作者:Kline JC
Silent Speech Recognition as an Alternative Communication Device for Persons with Laryngectomy.
- DOI:10.1109/taslp.2017.2740000
- 发表时间:2017-12
- 期刊:
- 影响因子:0
- 作者:Meltzner GS;Heaton JT;Deng Y;De Luca G;Roy SH;Kline JC
- 通讯作者:Kline JC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gianluca De Luca其他文献
Gianluca De Luca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gianluca De Luca', 18)}}的其他基金
SpeechSense: An Interactive Sensor Platform for Speech Therapy
SpeechSense:用于言语治疗的交互式传感器平台
- 批准号:
10256832 - 财政年份:2022
- 资助金额:
$ 71.4万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
9321913 - 财政年份:2015
- 资助金额:
$ 71.4万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
9046217 - 财政年份:2015
- 资助金额:
$ 71.4万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
8734495 - 财政年份:2013
- 资助金额:
$ 71.4万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
8521782 - 财政年份:2013
- 资助金额:
$ 71.4万 - 项目类别:
A Wireless-Sensor System for Reliable Recordings during Vigorous Muscle Activitie
无线传感器系统可在剧烈肌肉活动期间进行可靠记录
- 批准号:
8392830 - 财政年份:2012
- 资助金额:
$ 71.4万 - 项目类别:
A Wireless Sensor System for Reliable Recordings During Exercise
用于运动期间可靠记录的无线传感器系统
- 批准号:
8978255 - 财政年份:2012
- 资助金额:
$ 71.4万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 71.4万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 71.4万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 71.4万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 71.4万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 71.4万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 71.4万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 71.4万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 71.4万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 71.4万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 71.4万 - 项目类别:
Research Grant














{{item.name}}会员




