A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
基本信息
- 批准号:9321913
- 负责人:
- 金额:$ 56.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerActivities of Daily LivingAffectAlgorithmsAmericanBradykinesiaCalibrationCerebral PalsyClinicalComplementComplexComputer softwareDataDatabasesDevelopmentDevicesDiseaseDyskinetic syndromeDystoniaEffectivenessEnhancement TechnologyEssential TremorFreezingFutureGaitGait abnormalityGeneric DrugsGoalsGuidelinesHealth Care SectorHome environmentHybridsIndividualInvoluntary MovementsKineticsLaboratoriesLeadLeftLimb structureMeasurementMiniaturizationModalityMonitorMorphologic artifactsMotorMovementMovement DisordersMuscleNatureNeurologicPaperParkinson DiseasePatient Self-ReportPatientsPhasePopulationPostureProcessProductivityReportingResearchResearch PersonnelResolutionRestless Legs SyndromeRiskRotationScientistSeveritiesSurfaceSystemTabletsTechniquesTechnologyTestingTimeTrainingTremorUpdateWalkingWireless Technologybasebrain behaviorcommercializationdata acquisitiondata managementdesignhandheld mobile devicehuman subjectimprovedinstrumentmotor symptomnervous system disordernew technologynovelpatient monitoring deviceportabilityprospectiveprotocol developmentprototypepublic health relevancesensorsignal processingsoft tissuesystems researchtoolusability
项目摘要
DESCRIPTION (provided by applicant): The goal of this Phase II is to enhance the availability of advanced brain and behavior research tools [PA-14-250] by developing an automated sensor-based means of tracking the presence and severity of a broad spectrum of movement disorders during unscripted activities of daily living. The continuously updated and interpreted information from body-worn sensors will provide accurate, objective, and high resolution (1 s.) measurement of motor symptom severity of tremor, dyskinesia, bradykinesia, freezing and gait disorders in Parkinson's disease and postural/kinetic tremor in essential tremor. It will allow researchers to assess the oftentimes complex and dynamic nature of movement disorders, which is poorly captured by the current standard of self-reports and pencil-and-paper instruments. Advances in wearable sensor technology have facilitated such a solution, but there are currently no movement disorder recognition devices capable of interpreting sensor data from non- scripted activity in an effective manner for the more than 45 million people in the U.S. with movement disorders. Our approach is unique in that we are developing a generic Application Generator (AG) software platform containing signal processing modules that can be readily configured to provide automated recognition for different disorders without the need to prepare separate algorithms from scratch for each. Phase I established a proof of concept by developing a rudimentary AG platform that achieved automatic recognition of tremor, dyskinesia and freezing-of-gait in patients with Parkinson's disease (PD) from novel hybrid sensors that provided both muscle activity and movement data through surface electromyographic (sEMG) and accelerometer recordings. Phase II will continue the development to include a broader range of PD movement disorders, as well as other neurological conditions. Aim 1 will create an enhanced AG Platform by incorporating combined sEMG and inertial measurement unit (IMU) sensors to more completely describe involuntary movements and reduce the risk when tracking additional disorders. Human subject testing will provide a sensor database for testing IMU sensor accuracy and minimizing soft tissue artifacts. The Phase I recognition algorithms will be updated using the enhanced platform. Aim 2 will use the enhanced platform to develop new recognition applications that track bradykinesia and gait disorders in PD, and postural and kinetic tremors in patients with essential tremor. Our goal is to achieve error rates < 5% during unconstrained monitoring conditions with user- independent algorithms. Aim 3 will deliver a portable pre-commercial device with the requisite hardware, software, user interface, and report generator to effectively monitor PD, essential tremor, and sitting/standing/walking activity. The system will collect and process sEMG/IMU data using a tablet PC to enhance usability. Movement disorder experts and prospective end-users will guide the Phase II development and assist us with future commercialization plans for other neurological conditions such as cerebral palsy, dystonia, ALS, and restless leg syndrome. It will also form the basis for a patient-operable
device for clinical use.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gianluca De Luca其他文献
Gianluca De Luca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gianluca De Luca', 18)}}的其他基金
SpeechSense: An Interactive Sensor Platform for Speech Therapy
SpeechSense:用于言语治疗的交互式传感器平台
- 批准号:
10256832 - 财政年份:2022
- 资助金额:
$ 56.65万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
9046217 - 财政年份:2015
- 资助金额:
$ 56.65万 - 项目类别:
Subvocal Speech for Augmentative and Alternative Communication
用于增强性和替代性交流的默声语音
- 批准号:
9130174 - 财政年份:2015
- 资助金额:
$ 56.65万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
8734495 - 财政年份:2013
- 资助金额:
$ 56.65万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
8521782 - 财政年份:2013
- 资助金额:
$ 56.65万 - 项目类别:
A Wireless-Sensor System for Reliable Recordings during Vigorous Muscle Activitie
无线传感器系统可在剧烈肌肉活动期间进行可靠记录
- 批准号:
8392830 - 财政年份:2012
- 资助金额:
$ 56.65万 - 项目类别:
A Wireless Sensor System for Reliable Recordings During Exercise
用于运动期间可靠记录的无线传感器系统
- 批准号:
8978255 - 财政年份:2012
- 资助金额:
$ 56.65万 - 项目类别:
相似海外基金
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 56.65万 - 项目类别:
Studentship
Developing a trunk function assessment for hemiplegics. -For improving activities of daily living-
开发偏瘫患者的躯干功能评估。
- 批准号:
23K10540 - 财政年份:2023
- 资助金额:
$ 56.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation with the activities of daily living and the subjective values among people with social withdrawal
社交退缩者日常生活活动与主观价值观的关系
- 批准号:
23K16596 - 财政年份:2023
- 资助金额:
$ 56.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: RI: Understanding Activities of Daily Living in Indoor Scenarios
CRII:RI:了解室内场景中的日常生活活动
- 批准号:
2245652 - 财政年份:2023
- 资助金额:
$ 56.65万 - 项目类别:
Standard Grant
Association between Nursing Care and Prognosis and Activities of Daily Living in Acute Stroke patients by using Big Data.
利用大数据研究急性脑卒中患者的护理与预后和日常生活活动的关系。
- 批准号:
23K16412 - 财政年份:2023
- 资助金额:
$ 56.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sources of vulnerability among those using homecare despite having no limitations in Activities of Daily Living. An intersectionality analysis
尽管日常生活活动没有限制,但使用家庭护理的人的脆弱性来源。
- 批准号:
499112 - 财政年份:2023
- 资助金额:
$ 56.65万 - 项目类别:
Operating Grants
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10429480 - 财政年份:2022
- 资助金额:
$ 56.65万 - 项目类别:
Effects of a model of nurses-occupational therapists collaborative practice on activities of daily living in elderly patients
护士-职业治疗师合作实践模式对老年患者日常生活活动的影响
- 批准号:
22K17540 - 财政年份:2022
- 资助金额:
$ 56.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
- 批准号:
10668160 - 财政年份:2022
- 资助金额:
$ 56.65万 - 项目类别:
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10621820 - 财政年份:2022
- 资助金额:
$ 56.65万 - 项目类别:














{{item.name}}会员




