Adaptive & Individualized AAC

自适应

基本信息

  • 批准号:
    10600065
  • 负责人:
  • 金额:
    $ 58.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Nearly 5 million Americans require augmentative and alternative communication (AAC) methods to meet their daily communication needs. Some of these high-need individuals have motor impairments so severe (due to conditions such as brainstem stroke, traumatic brain injury, Guillain Barré syndrome, and cerebral palsy, among other disabilities) that they do not have the manual dexterity to control AAC technology and require alternative access methods (such as eye-tracking, head-tracking, or switch-scanning). Existing solutions, however, require extensive maintenance, frequent re-calibrations, and manual interface modifications that must be carried out with continued assistance from a caregiver or by compensating via their own residual motor activity. The excessive workload of adapting to these alternative communication methods are among the leading causes of AAC abandonment, ultimately depriving this population of their fundamental right to communication. To meet the critical communication needs of individuals with severe motor impairments, we propose the first AAC device comprising a versatile access method that automatically learns and customizes a keyboard interface to the residual motor function of the individual. In Phase I, we established the feasibility of developing a personalized keyboard interface (limited to A–Z, space) based on an individual’s cursor movement and target selection abilities using a combined surface electromyographic (sEMG) and inertial (IMU) access method placed on their forehead. When evaluated amongst individuals with and without severe motor impairments, our AAC solution achieved greater information transfer rates (ITRs) over the standard QWERTY keyboard. Having successfully demonstrated this proof-of-concept, we are collaborating with speech researchers and clinicians at Boston University, MA (STEPP Lab for Sensorimotor Rehabilitation Engineering) and Madonna Rehabilitation Hospital, NE (Institute for Rehabilitation Science and Engineering) to advance our Phase I system into a pre- commercial MyAACTM system comprising versatile access method and personalized, comprehensive communication software. We will achieve this by developing hardware to support streamlined access across multiple points on the body (Aim 1), designing automated algorithms to rapidly create an expanded AAC interface, inclusive of letters, numbers, symbols, emojis, and word completion options, that is personalized based on the residual motor function of user-specific access points (Aim 2), creating software for point-of-care use of the access technology and interface, and evaluating the resulting MyAACTM system for communication efficacy in individuals with severe motor impairments (Aim 3). Our milestone will be to demonstrate that MyAACTM improves ITR and user experience over conventional AAC devices. The final MyAACTM deliverable will be easily integrated with existing AAC tablets and mobile devices to provide those in need of alternative communication methods with an automatically customized, efficient, and intuitive solution to restore communication access in their daily lives.
近500万美国人需要辅助和替代沟通(AAC)方法来满足他们的需求。 日常沟通需要。其中一些高需求的人有严重的运动障碍(由于 脑干中风、创伤性脑损伤、格林巴利综合征和脑瘫等疾病, 其他残疾),他们没有灵巧的手来控制AAC技术,需要替代的 访问方法(如眼睛跟踪、头部跟踪或开关扫描)。然而,现有的解决方案需要 必须进行大量维护、频繁重新校准和手动接口修改 在护理者的持续帮助下或通过他们自己的残余运动活动进行补偿。的 适应这些替代通信方法的过度工作量是 放弃AAC,最终剥夺了这一人口的基本通信权利。满足 严重运动障碍者的关键沟通需求,我们提出了第一个AAC 一种包括通用访问方法的设备,该方法自动学习和定制键盘接口, 个体的残余运动功能。在第一阶段,我们确定了发展一个 基于个人光标移动和目标的个性化键盘界面(限于A-Z,空格) 选择能力,使用组合的表面肌电图(sEMG)和惯性(IMU)访问方法放置 在他们的额头上。当在有和没有严重运动障碍的个体中进行评估时,我们的AAC 该解决方案在标准QWERTY键盘上实现了更高的信息传输速率(ITR)。具有 成功地证明了这一概念验证,我们正在与语音研究人员和临床医生合作, 波士顿大学,MA(STEPP实验室的感觉运动康复工程)和麦当娜康复 医院,NE(康复科学与工程研究所),以推进我们的第一阶段系统成为一个预- 商业MyAACTM系统,包括通用的访问方法和个性化的、全面的 通信软件。我们将通过开发硬件来实现这一目标, 身体上的多个点(目标1),设计自动算法以快速创建扩展的AAC 界面,包括字母,数字,符号,表情符号和单词完成选项,基于个性化 关于用户特定接入点的剩余运动功能(目标2),创建用于护理点的软件, 接入技术和接口,并评估由此产生的MyAACTM系统的通信效率 在有严重运动障碍的个体中(目标3)。我们的里程碑将证明MyAACTM 与传统AAC设备相比,改善了ITR和用户体验。最终的MyAACTM交付将很容易 与现有AAC平板电脑和移动的设备集成,为需要替代通信的用户提供 通过自动定制、高效且直观的解决方案, 日常生活

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gianluca De Luca其他文献

Gianluca De Luca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gianluca De Luca', 18)}}的其他基金

SpeechSense: An Interactive Sensor Platform for Speech Therapy
SpeechSense:用于言语治疗的交互式传感器平台
  • 批准号:
    10256832
  • 财政年份:
    2022
  • 资助金额:
    $ 58.49万
  • 项目类别:
EMG Voice Restoration
肌电图语音恢复
  • 批准号:
    10009728
  • 财政年份:
    2018
  • 资助金额:
    $ 58.49万
  • 项目类别:
EMG Voice Restoration
肌电图语音恢复
  • 批准号:
    10376786
  • 财政年份:
    2018
  • 资助金额:
    $ 58.49万
  • 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
  • 批准号:
    9321913
  • 财政年份:
    2015
  • 资助金额:
    $ 58.49万
  • 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
  • 批准号:
    9046217
  • 财政年份:
    2015
  • 资助金额:
    $ 58.49万
  • 项目类别:
Subvocal Speech for Augmentative and Alternative Communication
用于增强性和替代性交流的默声语音
  • 批准号:
    9130174
  • 财政年份:
    2015
  • 资助金额:
    $ 58.49万
  • 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
  • 批准号:
    8734495
  • 财政年份:
    2013
  • 资助金额:
    $ 58.49万
  • 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
  • 批准号:
    8521782
  • 财政年份:
    2013
  • 资助金额:
    $ 58.49万
  • 项目类别:
A Wireless-Sensor System for Reliable Recordings during Vigorous Muscle Activitie
无线传感器系统可在剧烈肌肉活动期间进行可靠记录
  • 批准号:
    8392830
  • 财政年份:
    2012
  • 资助金额:
    $ 58.49万
  • 项目类别:
A Wireless Sensor System for Reliable Recordings During Exercise
用于运动期间可靠记录的无线传感器系统
  • 批准号:
    8978255
  • 财政年份:
    2012
  • 资助金额:
    $ 58.49万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.49万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 58.49万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 58.49万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 58.49万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 58.49万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 58.49万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 58.49万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 58.49万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 58.49万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 58.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了