Personalizing Matrix Assisted Autologous Chondrocyte Implantation

个性化基质辅助自体软骨细胞植入

基本信息

  • 批准号:
    8612678
  • 负责人:
  • 金额:
    $ 29.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-12 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Success of Autologous Chondrocyte Implantation (ACI) for treating damaged cartilage in the knee has been marginal and limited to young, healthy, and active patients. With the advent of second generation ACI referred to as Matrix-Assisted ACI (MACI), a new opportunity arises. We hypothesize that if the design of the matrix is patient-specific (i.e., specific to the tissue synthesis capabilities of the cell), it will be possible to not only improve the effectiveness of ACI long-term, but expand its indication to a wider patient population regardless of age or health. Thus, the overarching goal of this research project is to personalize MACI. Our innovative approach to personalizing MACI combines the following two highly interconnected themes: (a) A new class of highly tunable hydrogels with spatiotemporal control over degradation (to enable patient-matched tissue synthesis capabilities), high moduli capabilities (to restore function), and matrix-retention capabilities (to minimize tissue loss). (b) The introduction of a universal computational tool based on a well-established theoretical framework, which will analyze data related to the response of a patient-specific cell and, based on this information, predict the corresponding hydrogel structure and degradation that enables tissue growth and sustained mechanical integrity in a dynamic loading environment (such as that in the knee). To accomplish our overall research goals, the specific aims are as follows. We aim to determine model constants that enable the design of personalized hydrogels, first in the absence of mechanical loading (Aim 1) then in the presence of mechanical loading (Aim 2). We will accomplish this through an integrated experimental and simulation campaign combined with the use of a self-learning algorithm. This will lead to the construction of the data- driven predictive computational model. Once developed, we will test the predictive capability of the mathematical model in personalized MACI using a large animal model, specifically to treat a chondral lesion in the knee of a swine (Aim 3). At the completion of this five year research project, we expect to have developed a predictive computational tool and established a novel and highly tunable hydrogel platform for personalizing MACI. The universal nature of the computational predictive tool enables it to be broadly applied in future research to other scaffolds and cells, including osteoarthritic chondrocytes and stem cells.
自体软骨细胞植入(ACI)治疗膝关节软骨损伤已取得成功

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie J Bryant其他文献

Stephanie J Bryant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie J Bryant', 18)}}的其他基金

Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
  • 批准号:
    10378055
  • 财政年份:
    2021
  • 资助金额:
    $ 29.33万
  • 项目类别:
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
  • 批准号:
    10206869
  • 财政年份:
    2021
  • 资助金额:
    $ 29.33万
  • 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
  • 批准号:
    10063721
  • 财政年份:
    2020
  • 资助金额:
    $ 29.33万
  • 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
  • 批准号:
    10210394
  • 财政年份:
    2020
  • 资助金额:
    $ 29.33万
  • 项目类别:
The Origin and Function of Macrophages in the Foreign Body Response
巨噬细胞在异物反应中的起源和功能
  • 批准号:
    9611776
  • 财政年份:
    2018
  • 资助金额:
    $ 29.33万
  • 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
  • 批准号:
    10112931
  • 财政年份:
    2017
  • 资助金额:
    $ 29.33万
  • 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
  • 批准号:
    9926114
  • 财政年份:
    2017
  • 资助金额:
    $ 29.33万
  • 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
  • 批准号:
    9246272
  • 财政年份:
    2017
  • 资助金额:
    $ 29.33万
  • 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
  • 批准号:
    10612072
  • 财政年份:
    2016
  • 资助金额:
    $ 29.33万
  • 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
  • 批准号:
    10446482
  • 财政年份:
    2016
  • 资助金额:
    $ 29.33万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.33万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 29.33万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 29.33万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 29.33万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 29.33万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 29.33万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 29.33万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 29.33万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 29.33万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 29.33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了