Structural origin of fibrin clot mechanical properties
纤维蛋白凝块机械性能的结构起源
基本信息
- 批准号:8903542
- 负责人:
- 金额:$ 40.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-12-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAngioplastyApplications GrantsAtomic Force MicroscopyBehaviorBindingBiocompatible MaterialsBiomechanicsBiomedical ResearchBlood PlateletsBlood VesselsBlood coagulationBlood flowCharacteristicsChemicalsClinicalClot retractionCoagulation ProcessComplexConfocal MicroscopyDataDissociationElasticityElectron MicroscopyExhibitsFiberFibrinFibrinogenHealthHemorrhageHemostatic AgentsHemostatic functionHumanIndividualKineticsLateralLeadLengthLipoproteinsMapsMeasuresMechanicsMicroscopicModelingModificationMolecularMolecular StructureMutationMyocardial InfarctionNoduleObstructionOutcomePharmacia brand of estropipatePhysiologicalPlasmaPlasma ProteinsPlayPolymersPropertyProteinsReactionRecombinantsResearchResolutionRoentgen RaysRoleSpectroscopy, Fourier Transform InfraredSpectrum AnalysisStretchingStrokeStructureSurfaceTherapeuticTherapeutic EmbolizationThermodynamicsThromboembolismThrombosisThrombusVenousWitbasebiophysical techniquesclinically significantcomparativecomputerizedconformational conversioncrosslinkin vivoinhibitor/antagonistinsightmolecular domainmolecular dynamicsmulti-scale modelingmutantnanomechanicsnetwork modelsnew therapeutic targetnovelnovel strategiesoptical trapspolymerizationpreventreconstructionresponsescreeningsimulationsingle moleculetherapeutic targetthrombolysistwo-dimensionalwound
项目摘要
DESCRIPTION (provided by applicant): A new field of biomedical research, biomechanics of hemostasis and thrombosis, has been quickly developing over the past few years. The mechanical properties of fibrin are naturally variable and largely determine whether clots stanch bleeding, or lead to thrombosis or hemorrhage, and this makes them a desirable therapeutic target. In this application, fibrin mechanics will be studied with respect to structural changes during physiologically relevant fibrin deformations at increasing levels of complexity, including individual molecules, fibrin oligomers, and whole fibrin clots as well as ex vivo thrombi. The structural basis of the viscoelastic properties of fibrin is going to be examined using a uniquely broad, integrated approach based on state-of-the- art biophysical techniques, such as single-molecule optical trap-based force spectroscopy, wide angle X-ray scattering, Fourier Transform infrared spectroscopy, high-resolution rheometry, atomic force microscopy, confocal and electron microscopy, combined with computational molecular dynamics simulations and multiscale modeling. In Specific Aim 1, the structural transitions in fibrin at the molecular level
induced by mechanical force will be studied. Understanding of the unfolding of the coiled-coils, αC regions, and γ-nodules will define the molecular changes that occur in vivo as a result of blood flow, clot retraction, and wound stretching. The α-helix to β-sheet transition in the coiled-coils is an important mechanism of fibrin mechanics and potentially tunable for clinical purposes. Straightening of the αC polymers and unfolding of the ?-nodules also play major roles in fibrin mechanical properties. In Specific Aim 2, nanomechanics of the A:a knob-hole bonds that hold fibrin together will be studied at the single-molecule level. Preliminary data show that at the A:a
bonds exhibit counterintuitive "catch" bond behavior, meaning that the strength of the bond increases with increasing force. This novel finding is a basis for further in depth studies because
of its general importance for the field of biomolecular interactions and potential physiological significance. Using a new approach, Binding- Unbinding Correlation Spectroscopy, that we developed we will extensively characterize the two-dimensional kinetics and thermodynamics of formation and dissociation of single A:a bonds. In Specific Aim 3, mechanical properties of clinically significant clots and thrombi will be studied, with a logical progression from the molecular and microscopic levels to increasingly complex macroscopic structures formed in vivo. Screening of chemicals and structural modifications that potentially stabilize or destabilize
fibrin molecular domains will be performed to reveal potential modulators of fibrin mechanical properties for therapeutic purposes. These studies would advance the field of hemostasis and thrombosis by leading to new structure- and mechanics-based approaches to prevent and treat bleeding and thrombosis.
描述(由应用提供):在过去的几年中,生物医学研究,止血和血栓形成的生物力学领域一直在迅速发展。纤维蛋白的机械性能是自然可变的,并且在很大程度上确定了切片的截面出血或导致血栓形成或出血,这使它们成为理想的治疗靶标。在此应用中,在物理相关的纤维蛋白变形期间,纤维蛋白力学将在复杂水平上增加,包括单个分子,纤维蛋白低聚物和整个纤维蛋白布以及离体血栓形成。基于最先进的生物物理技术,例如基于单分子光学诱捕的力光谱,广角X射线散射,傅立叶近变频谱,在近距离示意力,高分辨率的漫画,概要循环综合,概述,将使用基于最先进的生物物理技术的独特,综合技术,在基于单分子的力X射线散射,概述的循环层次,符合型号的循环液,将使用基于最新的生物物理技术的结构基础进行研究分子动力学模拟和多尺度建模。在特定的目标1中,分子水平的纤维蛋白的结构过渡
由机械力诱导的将研究。了解盘绕线圈,αc区域和γ-结节的展开将定义由于血流,凝块回缩和伤口拉伸而导致体内发生的分子变化。盘绕螺旋中的α-螺旋向β--折叠过渡是纤维蛋白机械的重要机制,并且可能用于临床目的。 αC聚合物的拉直和 - 结节的展开也在纤维蛋白机械性能中起主要作用。在特定的目标2中,A的纳米力学:将纤维蛋白结合在一起的旋钮键将在单分子水平上进行研究。初步数据显示在a:a
债券暴露了违反直觉的“捕获”键行为,这意味着键的强度随着力的增加而增加。这个新颖的发现是进一步深入研究的基础,因为
它对生物分子相互作用和潜在生理意义的领域的一般重要性。使用新方法,结合 - 解开相关光谱,我们开发了我们将广泛表征单个A形成和解离的二维动力学和热力学。在特定的目标3中,将研究临床意义的云和血栓的机械性能,并从分子和显微镜水平到体内形成的增长复杂的宏观结构进行逻辑发展。筛选可能稳定或破坏稳定的化学物质和结构修饰
将进行纤维蛋白分子结构域,以揭示用于治疗目的的纤维蛋白机械性能的潜在调节剂。这些研究将通过导致新的结构和基于机械的方法来预防和治疗出血和血栓形成,从而促进止血和血栓形成领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN W WEISEL其他文献
JOHN W WEISEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN W WEISEL', 18)}}的其他基金
Structural origin of fibrin clot mechanical properties
纤维蛋白凝块机械性能的结构起源
- 批准号:
7729670 - 财政年份:2009
- 资助金额:
$ 40.8万 - 项目类别:
Structural origin of fibrin clot mechanical properties
纤维蛋白凝块机械性能的结构起源
- 批准号:
8267014 - 财政年份:2009
- 资助金额:
$ 40.8万 - 项目类别:
Structural origin of fibrin clot mechanical properties
纤维蛋白凝块机械性能的结构起源
- 批准号:
8074959 - 财政年份:2009
- 资助金额:
$ 40.8万 - 项目类别:
Structural origin of fibrin clot mechanical properties
纤维蛋白凝块机械性能的结构起源
- 批准号:
7895665 - 财政年份:2009
- 资助金额:
$ 40.8万 - 项目类别:
STUDY OF THE MOLECULAR BASIS OF BLOOD CLOT EXTENSIBILITY BY FTIR
FTIR 研究血块延伸性的分子基础
- 批准号:
7598466 - 财政年份:2007
- 资助金额:
$ 40.8万 - 项目类别:
相似国自然基金
血管成形术球囊的周向取向晶体结构构筑及其扩张性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管成形术球囊的周向取向晶体结构构筑及其扩张性能研究
- 批准号:52203046
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
重组人血管内皮抑制素复合磷酸钙抗肿瘤骨水泥治疗肺癌骨转移的实验研究
- 批准号:81701798
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
载P物质的胶原/聚乳酸己内酯电纺膜用于心脏瓣膜快速再生的实验研究
- 批准号:81670372
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
磁引导超声靶向磁性高分子微泡在经皮血管成形术后增效干细胞移植中的研究
- 批准号:81571693
- 批准年份:2015
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Cyclin-dependent kinase (CDK)19-mediated vein graft intimal hyperplasia
细胞周期蛋白依赖性激酶(CDK)19介导的静脉移植内膜增生
- 批准号:
10664327 - 财政年份:2023
- 资助金额:
$ 40.8万 - 项目类别:
Balancing the Risks of Ischemia and Bleeding in Percutaneous Coronary Interventio
平衡经皮冠状动脉介入治疗中的缺血和出血风险
- 批准号:
9216363 - 财政年份:2013
- 资助金额:
$ 40.8万 - 项目类别:
Balancing the Risks of Ischemia and Bleeding in Percutaneous Coronary Interventio
平衡经皮冠状动脉介入治疗中的缺血和出血风险
- 批准号:
8487063 - 财政年份:2013
- 资助金额:
$ 40.8万 - 项目类别:
A Luminal Vascular Coating to Prevent Intimal Hyperplasia Following Creation of a
一种防止内膜增生的管腔血管涂层
- 批准号:
8591968 - 财政年份:2013
- 资助金额:
$ 40.8万 - 项目类别:
Balancing the Risks of Ischemia and Bleeding in Percutaneous Coronary Interventio
平衡经皮冠状动脉介入治疗中的缺血和出血风险
- 批准号:
8724553 - 财政年份:2013
- 资助金额:
$ 40.8万 - 项目类别: