Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
基本信息
- 批准号:8646917
- 负责人:
- 金额:$ 16.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAnatomyAtlasesBiometryBrainBrain MappingBrain imagingClassificationClinicalCognitiveComputer AssistedDataData SetDementiaDescriptorDetectionDevelopmentDiagnosisDiffusion Magnetic Resonance ImagingDiscriminationDiseaseDisease ProgressionEarly DiagnosisEmotionalEuclidean SpaceFamilyFiberFoundationsGeometryGoalsGraphImageImage AnalysisImaging TechniquesInheritedJointsLabelLeadMagnetic Resonance ImagingManualsMapsMasksMeasurementMeasuresMethodsMetricModelingMultimodal ImagingNeuroanatomyNeurologicOutputPathologyPatientsPatternPerfusionPlayPopulationPreventionPsychometricsPublic HealthResearchResearch PersonnelRoleSensitivity and SpecificitySeriesSiteSocietiesSoftware ToolsSolidSolutionsSpin LabelsStagingStructureSurfaceSystemTestingThickTissuesTrainingTraining ActivityValidationVariantabstractingbasecerebral atrophyclinical Diagnosisclinical practicedisabilitygray matterimprovedmild cognitive impairmentneuroimagingnovelreconstructiontoolwhite matter
项目摘要
DESCRIPTION (provided by applicant): Project Summary/Abstract Neuroimaging plays an increasingly important role in the early diagnosis of Alzheimer's disease (AD). The availability of data from large scale, multi-site studies, such as the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Dominantly Inherited Alzheimer's Network (DIAN), provide unprecedented opportunities of improving our understanding of this complicated disease. On the other hand, these large scale, high dimensional imaging data of ever growing size call for the urgent needs of developing and validating robust and automated mapping tools. To become in independent investigator of brain imaging research in AD, the candidate proposes in this K01 application to receive training in multimodal image analysis, clinical diagnosis of AD, MR imaging techniques, and biostatistics. These training activities will greatly augment the candidate's background in neuroimage analysis and establish a solid foundation for his long term goal of being a leading researcher in computer-aided early diagnosis of AD. In the research plan, the candidate will develop and validate a suite of novel tools for the mapping of neuroanatomy during the development and progression of AD using intrinsic geometry of the anatomical structure. In contrast to conventional approaches that align brains in a canonical Euclidean space such as the Talairach atlas, the candidate models the anatomy intrinsically with the eigenfunctions of the Laplace-Beltrami (LB) operator and their Reeb graphs. This spectral approach is invariant to natural pose variations, robust to geometric deformations due to pathology and disease progression, and leads to novel methods for surface reconstruction, modeling, and mapping. The specific aims are: 1. Validate and continue to develop an intrinsic framework for the mapping of sub-cortical structures based on the LB eigenfunctions. 2. Develop and validate an automated system for cortical surface extraction, major sulci identification, and mapping. 3. Develop and validate novel algorithms for multimodal fusion with cortical mapping. The new algorithms will be validated with cognitive measures using data from ADNI and DIAN, and compared with existing methods in terms of the discrimination power in the early diagnosis of AD. The software tools developed in this project will be distributed publicly.
描述(由申请人提供):项目摘要/摘要神经影像学在阿尔茨海默病(AD)的早期诊断中发挥着越来越重要的作用。来自大规模、多地点研究的数据的可用性,例如阿尔茨海默病神经影像学倡议(ADNI)和显性遗传阿尔茨海默病网络(DIAN),为提高我们对这种复杂疾病的理解提供了前所未有的机会。另一方面,这些不断增长的大规模、高维成像数据迫切需要开发和验证鲁棒的自动制图工具。为了成为AD脑成像研究的独立研究者,候选人在此K 01申请中提议接受多模式图像分析、AD临床诊断、MR成像技术和生物统计学方面的培训。这些培训活动将极大地增强候选人在神经影像分析方面的背景,并为他成为计算机辅助AD早期诊断领域的领先研究人员的长期目标奠定坚实的基础。在研究计划中,候选人将开发和验证一套新的工具,用于在AD的发展和进展过程中使用解剖结构的内在几何结构进行神经解剖学映射。与传统的方法,在一个典型的欧几里德空间,如Talairach图集,大脑对齐,候选人建模的解剖结构固有的特征函数的拉普拉斯-贝尔特拉米(LB)算子和他们的Reeb图。这种光谱方法是不变的自然姿态变化,由于病理和疾病进展的几何变形的鲁棒性,并导致新的表面重建,建模和映射的方法。具体目标是:1.继续开发一个内在的框架映射的皮层下结构的基础上的LB特征函数。2.开发并验证一个自动化系统,用于皮质表面提取、主要脑沟识别和映射。3.开发和验证新算法,用于多模态融合与皮质映射。新算法将使用ADNI和DIAN的数据进行认知测量验证,并与现有方法在AD早期诊断中的辨别能力进行比较。本项目开发的软件工具将公开分发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yonggang Shi其他文献
Yonggang Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yonggang Shi', 18)}}的其他基金
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 16.66万 - 项目类别:
Tau-induced connectome imaging markers of Alzheimer's disease
Tau 诱导的阿尔茨海默病连接组成像标志物
- 批准号:
10062748 - 财政年份:2020
- 资助金额:
$ 16.66万 - 项目类别:
Brainstem connectomes related to Alzheimer's disease
与阿尔茨海默病相关的脑干连接体
- 批准号:
9524584 - 财政年份:2018
- 资助金额:
$ 16.66万 - 项目类别:
Surface-Based Fiber Tracking and Modeling Techniques for Mapping the Superficial White Matter Connectome with Diffusion MRI
基于表面的纤维跟踪和建模技术,用于利用扩散 MRI 绘制浅表白质连接组图
- 批准号:
10588001 - 财政年份:2016
- 资助金额:
$ 16.66万 - 项目类别:
Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging
利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具
- 批准号:
9768460 - 财政年份:2016
- 资助金额:
$ 16.66万 - 项目类别:
Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging
利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具
- 批准号:
9356511 - 财政年份:2016
- 资助金额:
$ 16.66万 - 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
- 批准号:
8164121 - 财政年份:2012
- 资助金额:
$ 16.66万 - 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
- 批准号:
8758885 - 财政年份:2012
- 资助金额:
$ 16.66万 - 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
- 批准号:
9039077 - 财政年份:2012
- 资助金额:
$ 16.66万 - 项目类别: