Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging

利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具

基本信息

  • 批准号:
    9356511
  • 负责人:
  • 金额:
    $ 39.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-22 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT For the in vivo investigation of brain connectome, diffusion MRI (dMRI) is an important tool as it provides highly sensitive imaging markers and allows the examination of connection paths via tractography. With the success of the Human Connectome Project (HCP), high resolution, multi-shell diffusion imaging is emerging as the standard approach for dMRI data acquisition in connectome studies. To fully unleash the potential of multi-shell dMRI, in this project we will develop a suite of novel computational tools that jointly estimate fiber orientation distributions (FOD) and compartmental parameters. With FOD-based tractography, we can reliably resolve crossing fibers and reconstruct fiber bundles that faithfully follow known anatomy such as the retinotopy of visual pathways. Compartmental parameters provide sensitive imaging markers for studying local cellular environment surrounding the axons. Our tools are generally applicable for both human and mouse connectome research. One main challenge in diffusion tractography is the lack of rigorous validations with biologically meaningful ground truth. With large-scale tracer injection data of mouse brains from the Mouse Connectome Project (MCP) at USC and the Allen Mouse Brain Connectivity Atlas, we will perform a systematic validation and optimization of our FOD-based techniques from the denoising of imaging signals to the configuration of compartment models to the selection of tractography parameters. This will create a well-validated system for studying mouse connectome with multi-shell imaging, and provide intuitive guidelines for the design of human studies with FOD-based connectome. There are three specific aims in our project: 1. To develop a general computational framework for the joint estimation of fiber orientation and compartment models from multi-shell diffusion imaging. 2. To validate and optimize the computational tools using multi-shell dMRI data of mouse brains and axonal projection maps from tracer injections. 3. To develop a comprehensive toolkit for fiber bundle reconstruction from multi-shell dMRI data of human brains. In this project we will apply our software tools to analyze data collected in two disease studies. In the first study, we will focus on the cortico-striato- thalamo-cortical (CSTC) network and examine its connectivity changes in the BTBD3 mouse model of obsessive-compulsive disorder (OCD). In the second study, we will apply our tools to study the relation of retinal impairment and visual pathway integrity via the retinotopy-preserving connectivity between visual areas. All software tools developed in this project will be distributed freely to the research community.
摘要 对于脑连接体的活体研究,扩散MRI(dMRI)是重要的工具,因为它提供了高度的 敏感的成像标记,并允许通过纤维束成像检查连接路径。的成功 在人类连接组计划(HCP)中,高分辨率、多壳层扩散成像作为 连接体研究中dMRI数据采集的标准方法。为了充分释放多壳的潜力 dMRI,在这个项目中,我们将开发一套新的计算工具,共同估计纤维取向 分布(FOD)和房室参数。通过基于FOD的纤维束成像,我们可以可靠地解决 交叉纤维和重建纤维束,忠实地遵循已知的解剖学,如视网膜病变的 视觉路径房室参数为研究局部细胞提供了敏感的成像标记物 轴突周围的环境。我们的工具普遍适用于人类和小鼠的连接体 research.弥散纤维束成像的一个主要挑战是缺乏严格的生物学验证, 有意义的地面真相利用来自小鼠连接组的小鼠大脑的大规模示踪剂注射数据, 项目(MCP)在南加州大学和艾伦小鼠脑连接图谱,我们将进行系统的验证 和优化我们的基于FOD的技术,从成像信号的去噪到 房室模型对纤维束成像参数选择的影响。这将创建一个经过验证的系统, 利用多壳层成像技术研究小鼠连接体,为人体神经元的设计提供直观的指导 基于FOD的连接体研究。我们的项目有三个具体目标:1.培养一个将军 多壳纤维取向和隔室模型联合估计的计算框架 扩散成像2.使用小鼠多壳层dMRI数据验证和优化计算工具 大脑和轴突投影图。3.开发一个全面的光纤工具包 从人脑的多壳层dMRI数据进行束重建。在这个项目中,我们将应用我们的软件 工具来分析两项疾病研究中收集的数据。在第一项研究中,我们将重点关注皮质-纹状体- 丘脑-皮质(CSTC)网络,并检查其在BTBD 3小鼠模型中的连接变化。 强迫症(OCD)。在第二项研究中,我们将应用我们的工具来研究 视网膜损伤和视觉通路的完整性,通过视区之间的视网膜色素变性保持连通性。 在这个项目中开发的所有软件工具将免费分发给研究社区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yonggang Shi其他文献

Yonggang Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yonggang Shi', 18)}}的其他基金

Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
  • 批准号:
    10667903
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
Tau-induced connectome imaging markers of Alzheimer's disease
Tau 诱导的阿尔茨海默病连接组成像标志物
  • 批准号:
    10062748
  • 财政年份:
    2020
  • 资助金额:
    $ 39.08万
  • 项目类别:
Brainstem connectomes related to Alzheimer's disease
与阿尔茨海默病相关的脑干连接体
  • 批准号:
    9524584
  • 财政年份:
    2018
  • 资助金额:
    $ 39.08万
  • 项目类别:
Project: TR&D 3 (Intrinsic Shape Analysis)
项目:TR
  • 批准号:
    9480330
  • 财政年份:
    2016
  • 资助金额:
    $ 39.08万
  • 项目类别:
Surface-Based Fiber Tracking and Modeling Techniques for Mapping the Superficial White Matter Connectome with Diffusion MRI
基于表面的纤维跟踪和建模技术,用于利用扩散 MRI 绘制浅表白质连接组图
  • 批准号:
    10588001
  • 财政年份:
    2016
  • 资助金额:
    $ 39.08万
  • 项目类别:
Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging
利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具
  • 批准号:
    9768460
  • 财政年份:
    2016
  • 资助金额:
    $ 39.08万
  • 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
  • 批准号:
    8646917
  • 财政年份:
    2012
  • 资助金额:
    $ 39.08万
  • 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
  • 批准号:
    8164121
  • 财政年份:
    2012
  • 资助金额:
    $ 39.08万
  • 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
  • 批准号:
    8758885
  • 财政年份:
    2012
  • 资助金额:
    $ 39.08万
  • 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
  • 批准号:
    9039077
  • 财政年份:
    2012
  • 资助金额:
    $ 39.08万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了