Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging
利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具
基本信息
- 批准号:9768460
- 负责人:
- 金额:$ 39.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-22 至 2023-05-01
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic AnalysisAlgorithmsAnatomyAtlasesAxonBiologicalBrainBrain MappingCommunitiesComputer softwareDataData AnalysesData SetDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDiseaseEarly DiagnosisEarly treatmentEnvironmentFiberGrainGuidelinesHumanImageImpairmentIndividualInjectionsIntuitionInvestigationJointsKnowledgeLocationMapsMethodsModelingMusNeurologicObsessive-Compulsive DisorderPerformancePublic HealthResearchResolutionResourcesRetinalSignal TransductionSiteSoftware ToolsStructureSystemTechniquesTestingTracerValidationVision DisordersVisual PathwaysVisual impairmentVisual system structureWorkbasecomputer frameworkcomputerized toolsconnectomedata acquisitiondenoisingdesigndigitalearly detection biomarkersextrastriate visual cortexhuman datahuman modelimaging biomarkerimprovedin vivoin vivo Modelmouse modelnovelpreservationreconstructionsoftware developmentsuccesstooltractographyweb site
项目摘要
ABSTRACT
For the in vivo investigation of brain connectome, diffusion MRI (dMRI) is an important tool as it provides highly
sensitive imaging markers and allows the examination of connection paths via tractography. With the success
of the Human Connectome Project (HCP), high resolution, multi-shell diffusion imaging is emerging as the
standard approach for dMRI data acquisition in connectome studies. To fully unleash the potential of multi-shell
dMRI, in this project we will develop a suite of novel computational tools that jointly estimate fiber orientation
distributions (FOD) and compartmental parameters. With FOD-based tractography, we can reliably resolve
crossing fibers and reconstruct fiber bundles that faithfully follow known anatomy such as the retinotopy of
visual pathways. Compartmental parameters provide sensitive imaging markers for studying local cellular
environment surrounding the axons. Our tools are generally applicable for both human and mouse connectome
research. One main challenge in diffusion tractography is the lack of rigorous validations with biologically
meaningful ground truth. With large-scale tracer injection data of mouse brains from the Mouse Connectome
Project (MCP) at USC and the Allen Mouse Brain Connectivity Atlas, we will perform a systematic validation
and optimization of our FOD-based techniques from the denoising of imaging signals to the configuration of
compartment models to the selection of tractography parameters. This will create a well-validated system for
studying mouse connectome with multi-shell imaging, and provide intuitive guidelines for the design of human
studies with FOD-based connectome. There are three specific aims in our project: 1. To develop a general
computational framework for the joint estimation of fiber orientation and compartment models from multi-shell
diffusion imaging. 2. To validate and optimize the computational tools using multi-shell dMRI data of mouse
brains and axonal projection maps from tracer injections. 3. To develop a comprehensive toolkit for fiber
bundle reconstruction from multi-shell dMRI data of human brains. In this project we will apply our software
tools to analyze data collected in two disease studies. In the first study, we will focus on the cortico-striato-
thalamo-cortical (CSTC) network and examine its connectivity changes in the BTBD3 mouse model of
obsessive-compulsive disorder (OCD). In the second study, we will apply our tools to study the relation of
retinal impairment and visual pathway integrity via the retinotopy-preserving connectivity between visual areas.
All software tools developed in this project will be distributed freely to the research community.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yonggang Shi其他文献
Yonggang Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yonggang Shi', 18)}}的其他基金
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Tau-induced connectome imaging markers of Alzheimer's disease
Tau 诱导的阿尔茨海默病连接组成像标志物
- 批准号:
10062748 - 财政年份:2020
- 资助金额:
$ 39.08万 - 项目类别:
Brainstem connectomes related to Alzheimer's disease
与阿尔茨海默病相关的脑干连接体
- 批准号:
9524584 - 财政年份:2018
- 资助金额:
$ 39.08万 - 项目类别:
Surface-Based Fiber Tracking and Modeling Techniques for Mapping the Superficial White Matter Connectome with Diffusion MRI
基于表面的纤维跟踪和建模技术,用于利用扩散 MRI 绘制浅表白质连接组图
- 批准号:
10588001 - 财政年份:2016
- 资助金额:
$ 39.08万 - 项目类别:
Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging
利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具
- 批准号:
9356511 - 财政年份:2016
- 资助金额:
$ 39.08万 - 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
- 批准号:
8646917 - 财政年份:2012
- 资助金额:
$ 39.08万 - 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
- 批准号:
8164121 - 财政年份:2012
- 资助金额:
$ 39.08万 - 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
- 批准号:
8758885 - 财政年份:2012
- 资助金额:
$ 39.08万 - 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
- 批准号:
9039077 - 财政年份:2012
- 资助金额:
$ 39.08万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Continuing Grant














{{item.name}}会员




