Tau-induced connectome imaging markers of Alzheimer's disease
Tau 诱导的阿尔茨海默病连接组成像标志物
基本信息
- 批准号:10062748
- 负责人:
- 金额:$ 213.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease patientAmyloidAnimalsAtrophicAutopsyAxonBiologicalBrainBrain imagingClinicalCommunicationCommunitiesCorpus CallosumDataData SetDepositionDiffusion Magnetic Resonance ImagingDiseaseDisease modelEarly DiagnosisElderlyEnsureEventExplosionFiberGoalsHealthHumanImageImpaired cognitionInvestigationKnowledgeLate Onset Alzheimer DiseaseLatinoLeadLearningMagnetic Resonance ImagingMapsMeasuresMexican AmericansModelingNetwork-basedNeurofibrillary TanglesNeuronsPathologyPathway interactionsPatternPhasePlayPopulationPositron-Emission TomographyProtocols documentationPublic HealthReportingResearchResearch PersonnelRoleSenile PlaquesSoftware ToolsStagingSurfaceSymptomsTechniquesTimeaging brainbasecognitive changecomparativecomputerized toolsconnectomehyperphosphorylated tauimaging biomarkerimaging studyimprovedin vivoin vivo Modelinterestlongitudinal analysismultitaskneuroimagingnovelpredictive modelingprion-liketargeted imagingtau Proteinstau aggregationtooltractographywhite matter
项目摘要
Abstract
Hyperphosphorylated tau tangle is a defining hallmark of the Alzheimer’s disease (AD). Neuropathological and
recent tau PET imaging studies suggest that tau deposition has a much stronger correlation with clinical
symptoms than do amyloid plaques. The Braak staging suggests the neuron-to-neuron propagation of tau
pathology through axonal pathways, which has been supported with increasing evidence from animal and post-
mortem human studies. Limited research, however, has been conducted for the in vivo examination of
connectivity changes of fiber pathways involved in tau pathology propagation. There is thus a clear knowledge
gap regarding WHEN (specific tau pathology stage) and WHERE (specific fiber pathways) tau-induced
connectivity changes occur during the disease course of AD. Building upon our extensive track record in
connectome modeling and brain surface mapping, in this project we will develop novel computational tools for
the systematic examination of different types of fiber pathways involved in the propagation of tau pathology: the
short association fibers in the superficial white matter (SWM), the long association fibers within each hemisphere,
and the commissural fibers connecting the two hemispheres. Our project will leverage existing tau PET and
connectome imaging datasets that include: ADNI3 for late onset AD (LOAD) and the Estudio de la Enfermaded
de Alzheimer en Jalisciences (EEAJ) study for autosomal dominant AD (ADAD). This provides us the unique
opportunity to study ADAD and LOAD as being on an AD continuum and obtain a more complete characterization
of the fiber pathways affected by the tau pathology from the early prodromal stage to the ultimate onset of AD.
In addition, we will use an independent dataset (n=2000) from the Health & Aging Brain among Latino Elders
(HABLE) study to validate the generalizability of our computational tools and connectome imaging makers to the
Mexican American population. There are three specific aims in this project: 1. To develop novel computational
tools for measuring superficial and deep white matter connectivity associated with tau propagation. 2. To map
tau-induced connectivity changes of fiber pathways in AD. 3. To develop connectome-based prediction of tau-
related cognitive changes in AD. Our project will for the first time provide the comprehensive and in vivo
characterization of the fiber pathways affected by tau pathology in AD. This will help elucidate the role of different
fiber pathways in the propagation of tau pathology at different disease stages, in particular the U-fibers in the
SWM and the commissural fibers responsible for inter-hemispheric communications. The results from our study
will provide more targeted connectome imaging makers for the early prediction of AD, especially in studies
without tau PET imaging. All computational tools developed in this project will be freely distributed to the research
community to enable other AD imaging researchers for more robust and thorough investigation of tau pathology
networks.
抽象的
过度磷酸化的 tau 蛋白缠结是阿尔茨海默病 (AD) 的一个明显标志。神经病理学和
最近的 tau PET 成像研究表明 tau 沉积与临床有更强的相关性
症状比淀粉样斑块更严重。 Braak 分期表明 tau 蛋白在神经元之间传播
通过轴突通路进行病理学研究,这得到了越来越多的动物和术后证据的支持
人体尸检研究。然而,对体内检查进行的研究有限。
参与 tau 病理传播的纤维通路的连接性变化。这样就有了明确的认识
关于何时(特定 tau 病理阶段)和何处(特定纤维通路)tau 诱导的差距
AD 病程中会发生连接变化。建立在我们广泛的记录之上
连接组建模和大脑表面绘图,在这个项目中,我们将开发新颖的计算工具
对参与 tau 病理学传播的不同类型纤维通路进行系统检查:
浅层白质(SWM)中的短关联纤维,每个半球内的长关联纤维,
以及连接两个半球的连合纤维。我们的项目将利用现有的 tau PET 和
连接组成像数据集包括:用于晚发 AD (LOAD) 的 ADNI3 和 Estudio de la Enfermaded
de Alzheimer en Jalisciences (EEAJ) 针对常染色体显性 AD (ADAD) 的研究。这为我们提供了独特的
有机会研究 ADAD 和 LOAD 作为 AD 连续体并获得更完整的表征
从早期前驱阶段到 AD 最终发病期间受 tau 病理学影响的纤维通路。
此外,我们将使用来自拉丁裔老年人健康与老龄化大脑的独立数据集(n=2000)
(HABLE) 研究验证我们的计算工具和连接组成像制造商对
墨西哥裔美国人人口。该项目有三个具体目标: 1. 开发新颖的计算方法
用于测量与 tau 传播相关的浅层和深层白质连接性的工具。 2. 地图
AD 中 tau 诱导的纤维通路连接性变化。 3. 开发基于连接组的 tau 预测
AD 相关的认知变化。我们的项目将首次提供全面的体内
AD 中受 tau 病理学影响的纤维通路的特征。这将有助于阐明不同的角色
不同疾病阶段 tau 病理学传播中的纤维途径,特别是 U 纤维
SWM 和负责半球间通讯的连合纤维。我们的研究结果
将为 AD 的早期预测,特别是在研究中提供更有针对性的连接组成像技术
没有 tau PET 成像。该项目开发的所有计算工具将免费分发给研究人员
社区使其他 AD 成像研究人员能够对 tau 病理学进行更稳健和彻底的研究
网络。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A probabilistic atlas of locus coeruleus pathways to transentorhinal cortex for connectome imaging in Alzheimer's disease.
用于阿尔茨海默病连接组成像的蓝斑通路到内嗅皮层的概率图谱
- DOI:10.1016/j.neuroimage.2020.117301
- 发表时间:2020-12
- 期刊:
- 影响因子:5.7
- 作者:Sun W;Tang Y;Qiao Y;Ge X;Mather M;Ringman JM;Shi Y;for Alzheimer's Disease Neuroimaging Initiative
- 通讯作者:for Alzheimer's Disease Neuroimaging Initiative
Flow-based Geometric Interpolation of Fiber Orientation Distribution Functions.
纤维取向分布函数的基于流的几何插值。
- DOI:10.1007/978-3-031-43993-3_5
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Nie,Xinyu;Shi,Yonggang
- 通讯作者:Shi,Yonggang
Unsupervised Deep Learning for FOD-Based Susceptibility Distortion Correction in Diffusion MRI.
- DOI:10.1109/tmi.2021.3134496
- 发表时间:2022-05
- 期刊:
- 影响因子:10.6
- 作者:
- 通讯作者:
Groupwise track filtering via iterative message passing and pruning.
- DOI:10.1016/j.neuroimage.2020.117147
- 发表时间:2020-11-01
- 期刊:
- 影响因子:5.7
- 作者:Xia Y;Shi Y
- 通讯作者:Shi Y
FASSt : Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography.
FASSt:通过对称自动编码器进行过滤,用于球形浅表白质纤维束成像。
- DOI:10.1007/978-3-031-47292-3_12
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li,Yuan;Nie,Xinyu;Fu,Yao;Shi,Yonggang
- 通讯作者:Shi,Yonggang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yonggang Shi其他文献
Yonggang Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yonggang Shi', 18)}}的其他基金
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 213.06万 - 项目类别:
Brainstem connectomes related to Alzheimer's disease
与阿尔茨海默病相关的脑干连接体
- 批准号:
9524584 - 财政年份:2018
- 资助金额:
$ 213.06万 - 项目类别:
Surface-Based Fiber Tracking and Modeling Techniques for Mapping the Superficial White Matter Connectome with Diffusion MRI
基于表面的纤维跟踪和建模技术,用于利用扩散 MRI 绘制浅表白质连接组图
- 批准号:
10588001 - 财政年份:2016
- 资助金额:
$ 213.06万 - 项目类别:
Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging
利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具
- 批准号:
9768460 - 财政年份:2016
- 资助金额:
$ 213.06万 - 项目类别:
Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging
利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具
- 批准号:
9356511 - 财政年份:2016
- 资助金额:
$ 213.06万 - 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
- 批准号:
8646917 - 财政年份:2012
- 资助金额:
$ 213.06万 - 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
- 批准号:
8164121 - 财政年份:2012
- 资助金额:
$ 213.06万 - 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
- 批准号:
8758885 - 财政年份:2012
- 资助金额:
$ 213.06万 - 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
- 批准号:
9039077 - 财政年份:2012
- 资助金额:
$ 213.06万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 213.06万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 213.06万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 213.06万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 213.06万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 213.06万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 213.06万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 213.06万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 213.06万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 213.06万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 213.06万 - 项目类别:
Continuing Grant














{{item.name}}会员




