Tau-induced connectome imaging markers of Alzheimer's disease

Tau 诱导的阿尔茨海默病连接组成像标志物

基本信息

  • 批准号:
    10062748
  • 负责人:
  • 金额:
    $ 213.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Abstract Hyperphosphorylated tau tangle is a defining hallmark of the Alzheimer’s disease (AD). Neuropathological and recent tau PET imaging studies suggest that tau deposition has a much stronger correlation with clinical symptoms than do amyloid plaques. The Braak staging suggests the neuron-to-neuron propagation of tau pathology through axonal pathways, which has been supported with increasing evidence from animal and post- mortem human studies. Limited research, however, has been conducted for the in vivo examination of connectivity changes of fiber pathways involved in tau pathology propagation. There is thus a clear knowledge gap regarding WHEN (specific tau pathology stage) and WHERE (specific fiber pathways) tau-induced connectivity changes occur during the disease course of AD. Building upon our extensive track record in connectome modeling and brain surface mapping, in this project we will develop novel computational tools for the systematic examination of different types of fiber pathways involved in the propagation of tau pathology: the short association fibers in the superficial white matter (SWM), the long association fibers within each hemisphere, and the commissural fibers connecting the two hemispheres. Our project will leverage existing tau PET and connectome imaging datasets that include: ADNI3 for late onset AD (LOAD) and the Estudio de la Enfermaded de Alzheimer en Jalisciences (EEAJ) study for autosomal dominant AD (ADAD). This provides us the unique opportunity to study ADAD and LOAD as being on an AD continuum and obtain a more complete characterization of the fiber pathways affected by the tau pathology from the early prodromal stage to the ultimate onset of AD. In addition, we will use an independent dataset (n=2000) from the Health & Aging Brain among Latino Elders (HABLE) study to validate the generalizability of our computational tools and connectome imaging makers to the Mexican American population. There are three specific aims in this project: 1. To develop novel computational tools for measuring superficial and deep white matter connectivity associated with tau propagation. 2. To map tau-induced connectivity changes of fiber pathways in AD. 3. To develop connectome-based prediction of tau- related cognitive changes in AD. Our project will for the first time provide the comprehensive and in vivo characterization of the fiber pathways affected by tau pathology in AD. This will help elucidate the role of different fiber pathways in the propagation of tau pathology at different disease stages, in particular the U-fibers in the SWM and the commissural fibers responsible for inter-hemispheric communications. The results from our study will provide more targeted connectome imaging makers for the early prediction of AD, especially in studies without tau PET imaging. All computational tools developed in this project will be freely distributed to the research community to enable other AD imaging researchers for more robust and thorough investigation of tau pathology networks.
摘要 过度磷酸化的tau缠结是阿尔茨海默病(AD)的定义性标志。神经病理学和 最近的tau PET成像研究表明,tau沉积与临床表现有更强的相关性, 比淀粉样斑块更明显。Braak分期表明tau的神经元到神经元传播 病理学通过轴突途径,这已得到越来越多的证据支持,从动物和后, 尸体人体研究然而,对于在体内检查 涉及tau病理学传播的纤维途径的连接性变化。有一个明确的知识, 关于tau诱导的WHEN(特定tau病理学阶段)和WHERE(特定纤维通路)的差距 在AD的疾病过程中发生连接性变化。基于我们在以下方面的广泛业绩记录, 连接体建模和大脑表面映射,在本项目中,我们将开发新型计算工具, 系统检查涉及tau病理学传播的不同类型的纤维通路: 浅层白色物质(SWM)中的短联合纤维,每个半球内的长联合纤维, 以及连接两个半球的连合纤维我们的项目将利用现有的tau PET, 连接体成像数据集,包括:晚发性AD的ADNI 3(LOAD)和Enfermaded研究 阿尔茨海默氏病研究(EEAJ)常染色体显性AD(ADAD)。这为我们提供了独一无二的 有机会将ADAD和LOAD作为AD连续体进行研究,并获得更完整的表征 从早期前驱期到AD最终发作受tau病理学影响的纤维通路的变化。 此外,我们将使用一个独立的数据集(n=2000),从健康与老龄化的大脑在拉丁美洲老年人 (HABLE)研究,以验证我们的计算工具和连接体成像制造商的普遍性, 墨西哥裔美国人。该项目有三个具体目标:1。开发新的计算 用于测量与tau传播相关的表层和深层白色物质连通性的工具。2.映射 tau诱导的AD中纤维通路的连接性变化。3.为了开发基于连接体的tau蛋白预测- AD相关的认知变化。我们的项目将首次提供全面和体内 图10示出了AD中受tau病理学影响的纤维途径的表征。这将有助于阐明不同的 在不同疾病阶段tau病理学传播中的U-纤维途径,特别是 SWM和负责半球间通讯的连合纤维。我们的研究结果 将为AD的早期预测提供更有针对性的连接体成像标记物,特别是在研究中 没有tau PET成像。本项目开发的所有计算工具将免费分发给研究 社区,使其他AD成像研究人员能够对tau病理学进行更强大和彻底的研究 网络.

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A probabilistic atlas of locus coeruleus pathways to transentorhinal cortex for connectome imaging in Alzheimer's disease.
用于阿尔茨海默病连接组成像的蓝斑通路到内嗅皮层的概率图谱
  • DOI:
    10.1016/j.neuroimage.2020.117301
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Sun W;Tang Y;Qiao Y;Ge X;Mather M;Ringman JM;Shi Y;for Alzheimer's Disease Neuroimaging Initiative
  • 通讯作者:
    for Alzheimer's Disease Neuroimaging Initiative
Flow-based Geometric Interpolation of Fiber Orientation Distribution Functions.
纤维取向分布函数的基于流的几何插值。
Unsupervised Deep Learning for FOD-Based Susceptibility Distortion Correction in Diffusion MRI.
Groupwise track filtering via iterative message passing and pruning.
  • DOI:
    10.1016/j.neuroimage.2020.117147
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Xia Y;Shi Y
  • 通讯作者:
    Shi Y
FASSt : Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography.
FASSt:通过对称自动编码器进行过滤,用于球形浅表白质纤维束成像。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yonggang Shi其他文献

Yonggang Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yonggang Shi', 18)}}的其他基金

Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
  • 批准号:
    10667903
  • 财政年份:
    2023
  • 资助金额:
    $ 213.06万
  • 项目类别:
Brainstem connectomes related to Alzheimer's disease
与阿尔茨海默病相关的脑干连接体
  • 批准号:
    9524584
  • 财政年份:
    2018
  • 资助金额:
    $ 213.06万
  • 项目类别:
Project: TR&D 3 (Intrinsic Shape Analysis)
项目:TR
  • 批准号:
    9480330
  • 财政年份:
    2016
  • 资助金额:
    $ 213.06万
  • 项目类别:
Surface-Based Fiber Tracking and Modeling Techniques for Mapping the Superficial White Matter Connectome with Diffusion MRI
基于表面的纤维跟踪和建模技术,用于利用扩散 MRI 绘制浅表白质连接组图
  • 批准号:
    10588001
  • 财政年份:
    2016
  • 资助金额:
    $ 213.06万
  • 项目类别:
Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging
利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具
  • 批准号:
    9768460
  • 财政年份:
    2016
  • 资助金额:
    $ 213.06万
  • 项目类别:
Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging
利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具
  • 批准号:
    9356511
  • 财政年份:
    2016
  • 资助金额:
    $ 213.06万
  • 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
  • 批准号:
    8646917
  • 财政年份:
    2012
  • 资助金额:
    $ 213.06万
  • 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
  • 批准号:
    8164121
  • 财政年份:
    2012
  • 资助金额:
    $ 213.06万
  • 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
  • 批准号:
    8758885
  • 财政年份:
    2012
  • 资助金额:
    $ 213.06万
  • 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
  • 批准号:
    9039077
  • 财政年份:
    2012
  • 资助金额:
    $ 213.06万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 213.06万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 213.06万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 213.06万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 213.06万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 213.06万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 213.06万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 213.06万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 213.06万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 213.06万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 213.06万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了