Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
基本信息
- 批准号:8802230
- 负责人:
- 金额:$ 38.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-25 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBehaviorBehavioral SciencesBiologicalBrainClinical ResearchCognitionCommunitiesComplexDataData SetDiagnosisDiffusion Magnetic Resonance ImagingDimensionsDiseaseEarly DiagnosisFunctional Magnetic Resonance ImagingGenesGeneticGenetic DeterminismGenomicsGenotypeGoalsImageImaging TechniquesInvestigationJointsKnowledgeLibrariesLinkMagnetic Resonance ImagingMajor Depressive DisorderMeasuresMental DepressionMental HealthMental disordersMethodologyMethodsModelingMotivationMultimodal ImagingNatureNeurobiologyNoiseOutcomePatternResearchScientific Advances and AccomplishmentsSignal TransductionSingle Nucleotide PolymorphismSourceStatistical MethodsStructureSystemTestingWorkblinddiscrete datagenetic associationgenetic profilinggraphical user interfaceimprovedindependent component analysisinfancyinnovationinsightinterestmethod developmentneuroimagingnovelpublic health relevancetooltreatment responseuser friendly software
项目摘要
DESCRIPTION (provided by applicant): Study of mental disorders has entered into an exciting new era where biological measures from multiple platforms such as neuroimaging and genetics are being collected to help deepen the understanding of the disorders and improve diagnosis and treatment. Multi-dimensional data are becoming more common and hold great promise for advancing mental health research. However, effective statistical methods for extracting useful and complementary information from multi-dimensional data are still in their infancy. One of the major challenges is that multi-dimensional data often have different scales (continuous/discrete), data representations (scalar/array/matrix) and dimensions. Current analytical approaches typically conduct separate analysis within each dimension or apply simple correlative analyses. These methods are of very limited nature for uncovering latent patterns and associations in these data. This project seeks to develop novel statistical independent component analysis (ICA) methods to provide effective tools for reducing dimension, denoising and extracting features from large- scale multi-dimensional data. Specifically, the proposed methods would 1) provide a unified framework for decomposing and integrating multimodal neuroimaging data such as fMRI and DTI, 2) provide a discrete ICA model for extracting latent signals from large-scale discrete outcomes such as single-nucleotide polymorphism (SNP) genotype data, and 3) provide a joint ICA model for simultaneously decomposing neuroimaging and SNP genotype data to extract integrated imaging genetics features. The proposed statistical methods will be applied to a major depressive disorder (MDD) study, and user-friendly software will be developed and made available to general research communities. Our proposed method developments will directly benefit mental health research by providing innovative statistical tools
to combine information from multi-dimensional datasets that can facilitate diagnosis, deepen mechanistic understanding and improve treatment of mental disorders. Our methods are also ubiquitous enough to be generally useful to statistical practice.
描述(由申请人提供):精神障碍的研究已进入一个令人兴奋的新时代,其中正在收集来自多个平台的生物学措施,例如神经影像学和遗传学,以帮助加深对疾病的理解并改善诊断和治疗。多维数据变得越来越普遍,并在进行心理健康研究方面拥有巨大的希望。但是,从多维数据中提取有用和互补信息的有效统计方法仍处于起步阶段。主要挑战之一是多维数据通常具有不同的量表(连续/离散),数据表示(标量/数组/矩阵)和尺寸。当前的分析方法通常在每个维度内进行单独的分析或应用简单的相关分析。这些方法对于揭示这些数据中的潜在模式和关联的性质非常有限。该项目旨在开发新颖的独立组件分析(ICA)方法,以提供有效的工具,以降低尺寸,降低和从大型多维数据中提取特征。具体而言,提出的方法将1)提供一个统一的框架,用于分解和整合多模式神经影像学数据,例如fMRI和DTI,2)提供了一个离散的ICA模型,用于从大规模分离结果中提取潜在信号,例如从单核核苷酸(SNP)基于ICA的单个模型,并提供ICA模型,并提供ICA模型,并提供ICA模型)基因型数据提取集成成像遗传学特征。拟议的统计方法将应用于重度抑郁症(MDD)研究,并将开发用户友好的软件并将其提供给一般研究社区。我们提出的方法发展将通过提供创新的统计工具直接受益于心理健康研究
结合来自多维数据集的信息,这些信息可以促进诊断,加深机理理解并改善对精神障碍的治疗。我们的方法也无处不在,通常对统计实践有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Guo其他文献
Ying Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Guo', 18)}}的其他基金
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
9978956 - 财政年份:2019
- 资助金额:
$ 38.32万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10159966 - 财政年份:2019
- 资助金额:
$ 38.32万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10611987 - 财政年份:2019
- 资助金额:
$ 38.32万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10396640 - 财政年份:2019
- 资助金额:
$ 38.32万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
9110314 - 财政年份:2014
- 资助金额:
$ 38.32万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10264896 - 财政年份:2014
- 资助金额:
$ 38.32万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10687870 - 财政年份:2014
- 资助金额:
$ 38.32万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
9282512 - 财政年份:2014
- 资助金额:
$ 38.32万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10475127 - 财政年份:2014
- 资助金额:
$ 38.32万 - 项目类别:
Method Development of Agreement Measures and Applications in Mental Health
协议措施的方法开发及其在心理健康中的应用
- 批准号:
8639058 - 财政年份:2008
- 资助金额:
$ 38.32万 - 项目类别:
相似国自然基金
行为科学视角下人类个体差异性对人机合作信任的影响研究
- 批准号:62006121
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
考虑客户与员工行为的多技能呼叫中心集成排班优化方法研究
- 批准号:71271052
- 批准年份:2012
- 资助金额:53.0 万元
- 项目类别:面上项目
高风险企业生产事故的发生机制:行为科学的研究
- 批准号:70501035
- 批准年份:2005
- 资助金额:16.6 万元
- 项目类别:青年科学基金项目
复杂社会技术系统安全的前馈与反馈:行为科学的研究
- 批准号:70401018
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
煤矿事故预防的行为科学方法定量化试验研究
- 批准号:50474032
- 批准年份:2004
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Project 3: Primary Prevention and Uterine Preservation in Premenopausal Women with Obesity and Endometrial Hyperplasia/Cancer
项目3:绝经前妇女肥胖和子宫内膜增生/癌症的一级预防和子宫保留
- 批准号:
10711638 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Mindfulness and Behavior Change to Reduce Cardiovascular Disease Risk in Older People with HIV
正念和行为改变可降低老年艾滋病毒感染者的心血管疾病风险
- 批准号:
10762220 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
A Biobehavioral Intervention to Reduce Adverse Outcomes in Young Adult Testicular Cancer Survivors
减少年轻成年睾丸癌幸存者不良后果的生物行为干预
- 批准号:
10736501 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Michigan Emergency Department Improvement Collaborative AltERnaTives to admission for Pulmonary Embolism (MEDIC ALERT PE) Study
密歇根急诊科改进合作入院肺栓塞 (MEDIC ALERT PE) 研究
- 批准号:
10584217 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Society of Behavioral Medicine 2023 Annual Meeting & Scientific Sessions
行为医学学会2023年年会
- 批准号:
10681958 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别: