Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies

分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法

基本信息

  • 批准号:
    10396640
  • 负责人:
  • 金额:
    $ 61.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-16 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Project Summary To address the burden of mental illness, National institute of Mental Health encourages development of computational approaches that provide novel ways to understand relationships among complex, large datasets to further the understanding of the underlying pathophysiology of mental diseases. These datasets are multi- dimensional, including clinical assessments, behavioral symptoms, biological measurements such as neu- roimaging and psychophysiological data. The overall objective of this grant is to advance methodology for analyzing such data to more effectively extract relevant information that are predictive of disease, to improve the understanding of individual variability in clinical and neurobiological phenotypes, and to provide the capac- ity to handle both cross-sectional and longitudinal data. Our proposal will leverage two civilian trauma cohorts recruited through the Grady Trauma Project and the Grady Emergency Department Study, and an external validation cohort from the Hill Center study with a similar distribution of trauma exposure. We propose to develop statistically principled, computationally effi- cient statistical learning methods for addressing key challenges in analyzing these large datasets. Challenges include multi-type outcomes, high dimensional data with sparse signals and high noise levels, spatial and tem- poral dependence of neuroimaging data, and heterogeneous effects across patient population. The scientific premise of this computational psychiatry research is that analytical methods integrating information from brain, behavior, and symptoms will provide much-needed data driven platforms for improving diagnosis and prediction of PTSD and other mental disorders. In this application, we propose: (1) to develop partial generalized tensor regression methods and partial tensor quantile regression methods that can simultaneously achieve accurate prediction of clinical outcomes and efficient feature extraction from high dimensional neuroimaging biomarkers; (2) to develop tensor response quantile regression methods and global inference that can achieve comprehensive and robust understanding of the heterogeneity in high-dimensional neuroimaging phenotypes in terms of environmental factors such as trauma exposure; and (3) to develop and extend methods in Aims 1 and 2 for longitudinal multi-dimensional data that will enable prediction of future post-trauma symptom severity trajectories in terms of neuroimaging biomarkers and robustify the evaluation of the impact of psychophysiological factors on neuroimaging phe- notypes. The proposed methods will be applied to the two Grady studies to address scientific hypotheses relevant to PTSD research. We will use the Hill Center study as an independent validation cohort to evaluate the reproducibility and generalizability of the findings. User-friendly software will be developed. The proposed methodology is generally applicable to many other mental health studies with complex multi-dimensional data.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Guo其他文献

Ying Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Guo', 18)}}的其他基金

Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
  • 批准号:
    9978956
  • 财政年份:
    2019
  • 资助金额:
    $ 61.41万
  • 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
  • 批准号:
    10159966
  • 财政年份:
    2019
  • 资助金额:
    $ 61.41万
  • 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
  • 批准号:
    10611987
  • 财政年份:
    2019
  • 资助金额:
    $ 61.41万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    8802230
  • 财政年份:
    2014
  • 资助金额:
    $ 61.41万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    9110314
  • 财政年份:
    2014
  • 资助金额:
    $ 61.41万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    10264896
  • 财政年份:
    2014
  • 资助金额:
    $ 61.41万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    9282512
  • 财政年份:
    2014
  • 资助金额:
    $ 61.41万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    10687870
  • 财政年份:
    2014
  • 资助金额:
    $ 61.41万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    10475127
  • 财政年份:
    2014
  • 资助金额:
    $ 61.41万
  • 项目类别:
Method Development of Agreement Measures and Applications in Mental Health
协议措施的方法开发及其在心理健康中的应用
  • 批准号:
    8639058
  • 财政年份:
    2008
  • 资助金额:
    $ 61.41万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 61.41万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.41万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 61.41万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.41万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 61.41万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.41万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 61.41万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 61.41万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 61.41万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.41万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了