Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
基本信息
- 批准号:9282512
- 负责人:
- 金额:$ 43.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-25 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBehaviorBehavioral SciencesBiologicalBrainClinical ResearchCognitionCommunitiesComplexDataData ReportingData SetDiagnosisDiffusion Magnetic Resonance ImagingDimensionsDiseaseEarly DiagnosisFunctional Magnetic Resonance ImagingGenesGeneticGenetic DeterminismGenomicsGenotypeGoalsImageImaging TechniquesInvestigationJointsKnowledgeLibrariesLinkMagnetic Resonance ImagingMajor Depressive DisorderMeasuresMental DepressionMental HealthMental disordersMethodologyMethodsModelingMotivationMultimodal ImagingNatureNeurobiologyNoiseOutcomePatternResearchScientific Advances and AccomplishmentsSignal TransductionSingle Nucleotide PolymorphismSourceStatistical MethodsStructureSystemTestingWorkblinddiscrete datagenetic associationgenetic profilinggraphical user interfacehigh dimensionalityimaging geneticsimprovedindependent component analysisinfancyinnovationinsightinterestmethod developmentmultimodalityneuroimagingnovelpublic health relevancetooltreatment responseuser friendly software
项目摘要
DESCRIPTION (provided by applicant): Study of mental disorders has entered into an exciting new era where biological measures from multiple platforms such as neuroimaging and genetics are being collected to help deepen the understanding of the disorders and improve diagnosis and treatment. Multi-dimensional data are becoming more common and hold great promise for advancing mental health research. However, effective statistical methods for extracting useful and complementary information from multi-dimensional data are still in their infancy. One of the major challenges is that multi-dimensional data often have different scales (continuous/discrete), data representations (scalar/array/matrix) and dimensions. Current analytical approaches typically conduct separate analysis within each dimension or apply simple correlative analyses. These methods are of very limited nature for uncovering latent patterns and associations in these data. This project seeks to develop novel statistical independent component analysis (ICA) methods to provide effective tools for reducing dimension, denoising and extracting features from large- scale multi-dimensional data. Specifically, the proposed methods would 1) provide a unified framework for decomposing and integrating multimodal neuroimaging data such as fMRI and DTI, 2) provide a discrete ICA model for extracting latent signals from large-scale discrete outcomes such as single-nucleotide polymorphism (SNP) genotype data, and 3) provide a joint ICA model for simultaneously decomposing neuroimaging and SNP genotype data to extract integrated imaging genetics features. The proposed statistical methods will be applied to a major depressive disorder (MDD) study, and user-friendly software will be developed and made available to general research communities. Our proposed method developments will directly benefit mental health research by providing innovative statistical tools
to combine information from multi-dimensional datasets that can facilitate diagnosis, deepen mechanistic understanding and improve treatment of mental disorders. Our methods are also ubiquitous enough to be generally useful to statistical practice.
描述(由申请人提供):精神疾病的研究已经进入了一个令人兴奋的新时代,来自神经影像和遗传学等多个平台的生物测量值正在被收集,以帮助加深对疾病的理解并改进诊断和治疗。多维数据正变得越来越普遍,并为推进心理健康研究带来了巨大希望。然而,从多维数据中提取有用和补充信息的有效统计方法仍处于起步阶段。主要挑战之一是多维数据通常具有不同的尺度(连续/离散)、数据表示(标量/数组/矩阵)和维度。当前的分析方法通常在每个维度内进行单独分析或应用简单的相关分析。这些方法对于揭示这些数据中的潜在模式和关联来说非常有限。该项目旨在开发新颖的统计独立成分分析(ICA)方法,为大规模多维数据降维、去噪和提取特征提供有效的工具。具体来说,所提出的方法将1)提供用于分解和整合多模态神经影像数据(例如fMRI和DTI)的统一框架,2)提供离散ICA模型,用于从大规模离散结果(例如单核苷酸多态性(SNP)基因型数据)中提取潜在信号,以及3)提供用于同时分解神经影像和SNP的联合ICA模型 基因型数据以提取综合成像遗传学特征。拟议的统计方法将应用于重度抑郁症(MDD)研究,并且将开发用户友好的软件并向一般研究团体提供。我们提出的方法开发将通过提供创新的统计工具直接有利于心理健康研究
结合多维数据集的信息,可以促进诊断、加深对机制的理解并改善精神障碍的治疗。我们的方法也足够普遍,对统计实践普遍有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Guo其他文献
Ying Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Guo', 18)}}的其他基金
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
9978956 - 财政年份:2019
- 资助金额:
$ 43.73万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10159966 - 财政年份:2019
- 资助金额:
$ 43.73万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10611987 - 财政年份:2019
- 资助金额:
$ 43.73万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10396640 - 财政年份:2019
- 资助金额:
$ 43.73万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
8802230 - 财政年份:2014
- 资助金额:
$ 43.73万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
9110314 - 财政年份:2014
- 资助金额:
$ 43.73万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10264896 - 财政年份:2014
- 资助金额:
$ 43.73万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10687870 - 财政年份:2014
- 资助金额:
$ 43.73万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10475127 - 财政年份:2014
- 资助金额:
$ 43.73万 - 项目类别:
Method Development of Agreement Measures and Applications in Mental Health
协议措施的方法开发及其在心理健康中的应用
- 批准号:
8639058 - 财政年份:2008
- 资助金额:
$ 43.73万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 43.73万 - 项目类别:
Studentship
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
- 批准号:
2337351 - 财政年份:2024
- 资助金额:
$ 43.73万 - 项目类别:
Continuing Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 43.73万 - 项目类别:
Continuing Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319849 - 财政年份:2024
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant
MCA Pilot PUI: From glomeruli to pollination: vertical integration of neural encoding through ecologically-relevant behavior
MCA Pilot PUI:从肾小球到授粉:通过生态相关行为进行神经编码的垂直整合
- 批准号:
2322310 - 财政年份:2024
- 资助金额:
$ 43.73万 - 项目类别:
Continuing Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 43.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant
Understanding the synthesis and electronic behavior of beta tungsten thin film materials
了解β钨薄膜材料的合成和电子行为
- 批准号:
23K20274 - 财政年份:2024
- 资助金额:
$ 43.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




