Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
基本信息
- 批准号:10264896
- 负责人:
- 金额:$ 51.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-25 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAwardBehaviorBehavior assessmentBiological MarkersBrainBrain imagingClinicalClinical assessmentsCommunitiesComputational TechniqueDataData AnalysesData SetDevelopmentDiagnosisDiffusion Magnetic Resonance ImagingDimensionsDisease ProgressionFeeling suicidalFingerprintFunctional Magnetic Resonance ImagingFundingGoalsHumanHybridsImageIndividualInvestigationJointsLeadLibrariesLinkLongitudinal StudiesMajor Depressive DisorderMeasuresMental DepressionMental HealthMental disordersMethodsModelingNational Institute of Mental HealthNeural PathwaysNeurosciences ResearchPatientsPhenotypePhysiologicalPrediction of Response to TherapyPsychiatryPythonsRegimenRelapseResearchSample SizeSelection for TreatmentsStatistical MethodsStrategic PlanningStructureSymptomsTimeTreatment outcomeUnited States National Institutes of HealthValidationanalytical toolbasebehavior changebrain behaviorclinical biomarkerscohortcomplex datacomputer frameworkdenoisingdepressive symptomsdisorder subtypeeffective therapyendophenotypefeature extractiongraphical user interfaceimaging modalityimaging studyimprovedindependent component analysisindividualized medicineinnovationinsightlearning strategymagnetic resonance imaging/electroencephalographymethod developmentmultidimensional datamultimodalityneural circuitneural networkneurobiological mechanismneuroimagingneuroimaging markernovelpredict clinical outcomepredictive markerpredictive modelingpredictive toolsrelating to nervous systemtooltreatment planningtreatment responseuser friendly software
项目摘要
Project Summary/Abstract
Recent mental health studies have led to an expanded depth of multimodal brain imaging data, clinical
assessments and physiological data. In addition, longitudinal studies have become increasingly important to
capture the trajectory of disease progression, treatment response and relapse. This wealth of datasets
provides an unprecedented opportunity for crosscutting investigations. However, much-needed statistical
methods for exploring discoveries are lacking. In particular, there has been very limited development of
advanced statistical methods for several important objectives: decompose observed brain connectivity
measures to reveal underlying neural circuits which are key biomarkers for mental disorders, effectively extract
low dimensional neural features from imaging to reliably predict clinical outcomes such as treatment response,
and analyze longitudinal multidimensional data including neuroimaging, clinical and behavioral assessments to
study the dynamic interplay between brain and behavior changes due to treatments.
In this competing renewal proposal, we will build upon the theoretical and computational framework
established in our previous award to develop rigorous and computationally efficient statistical methods to
address the aforementioned objectives. Specifically, we plan to develop 1) a sparse and low rank ICA (SLR-
ICA) framework for reliable and parsimonious decomposition of brain connectivity measures to reveal
underlying neural circuits associated with specific clinical symptoms in mental disorders; 2) an ICA-Neural
Network (ICA-NN) predictive model that effectively extracts relevant low dimensional linear and non-linear
neural features to predict clinical outcomes; and (3) longitudinal multidimensional data analysis tools for
investigating heterogeneous changes in neural circuits due to different treatments and disease subtypes, and
disentangle the relationship between changes in neuroimaging phenotypes and clinical symptoms. The
statistical methods will be applied to a major NIH funded longitudinal study of major depressive disorder (MDD)
to help discover neural circuits underlying specific depressive symptoms (e.g. suicidal thoughts) and differential
treatment response, and ultimately help lead to more effective treatment for individual MDD patients based on
his/her own neural circuitry fingerprints and behavior. We plan to replicate the findings using an independent
validation cohort from an R01 study of MDD. User-friendly software will be made available to general research
communities. Our proposed method developments will directly benefit mental health research by providing
innovative statistical tools to effectively extract reliable and highly relevant low dimensional features from
neuroimaging to deepen mechanistic understanding and improve treatment of MDD and other mental
disorders.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Guo其他文献
Ying Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Guo', 18)}}的其他基金
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
9978956 - 财政年份:2019
- 资助金额:
$ 51.58万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10159966 - 财政年份:2019
- 资助金额:
$ 51.58万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10611987 - 财政年份:2019
- 资助金额:
$ 51.58万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10396640 - 财政年份:2019
- 资助金额:
$ 51.58万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
9110314 - 财政年份:2014
- 资助金额:
$ 51.58万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
8802230 - 财政年份:2014
- 资助金额:
$ 51.58万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10687870 - 财政年份:2014
- 资助金额:
$ 51.58万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
9282512 - 财政年份:2014
- 资助金额:
$ 51.58万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10475127 - 财政年份:2014
- 资助金额:
$ 51.58万 - 项目类别:
Method Development of Agreement Measures and Applications in Mental Health
协议措施的方法开发及其在心理健康中的应用
- 批准号:
8639058 - 财政年份:2008
- 资助金额:
$ 51.58万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 51.58万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 51.58万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 51.58万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 51.58万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 51.58万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 51.58万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 51.58万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 51.58万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 51.58万 - 项目类别: