Method Development of Agreement Measures and Applications in Mental Health

协议措施的方法开发及其在心理健康中的应用

基本信息

  • 批准号:
    8639058
  • 负责人:
  • 金额:
    $ 38.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-04-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION: Understanding the underlying mechanisms of the brain and behavior is an essential requirement for improving the diagnosis of and treatments for mental health diseases. There is an intense interest in generating different modulates of neuroimaging and behavioral data to gain new insights into brain functionality and its connections with behavior outcomes. Challenges in studying the relationships, particularly the alignment, among brain- behavior outcomes from different sources include: (1) the outcomes measured from different modalities are diverse and complex, often in different scales (continuous, ordinal) and of different data representations(scalar, vector, matrix); (2) the neuroimaging data is high dimensional and reflects not only the desired signal but also the background noise; (3) there are obstacles to compare neuroimaging data from multi-center studies due to considerable between-center variability in brain images obtained from different scanners and processing protocols. Currently, there are very limited statistical methods available to address these issues. The overall objective of this proposal is to develop a unified statistical framework that fills in the aforementioned gaps. Our proposal of adopting agreement-based methodology provides a novel perspective for investigating the alignment between behavior outcomes and the biology of the brain (neuroimaging). While standard agreement methodology has been limited to the evaluation of outcomes that are made on the same scale, our seminal work on "broad sense agreement (BSA)" (Peng et al. 2011, a featured JASA article) that characterizes the agreement/alignment between a continuous and an ordinal variable lays the foundation for a promising framework proposed in this application. Specifically, we plan to fulfill our research goals by characterizing the alignment among outcomes with different scales and data-representations; incorporating covariates; assessing the strength of alignment between neuroimaging biomarkers and symptom domains; identifying relevant features in high-dimensional neuroimaging data that align with specific symptom clusters; and assessing agreement and calibrating images from multi-center studies. The proposed statistical methods will be applied to an ongoing PTSD study and a national multi-center imaging study, and user-friendly software will be developed and made available to general research communities. Our proposed method developments will directly benefit mental health research, and they are ubiquitous enough to be generally useful contributions to statistical practice.
产品说明:了解大脑和行为的潜在机制是改善精神健康疾病诊断和治疗的基本要求。人们对生成不同调制的神经成像和行为数据以获得对大脑功能及其与行为结果的联系的新见解非常感兴趣。研究不同来源的脑-行为结果之间的关系,特别是对齐,面临的挑战包括:(1)不同模式测量的结果是多样和复杂的,通常在不同的尺度上(连续,有序)和不同的数据表示(2)神经成像数据是高维的,不仅反映了期望信号,而且反映了背景噪声;(3)由于从不同的扫描仪和处理协议获得的脑图像的相当大的中心间差异,因此比较来自多中心研究的神经成像数据存在障碍。目前,可用于解决这些问题的统计方法非常有限。这项建议的总体目标是建立一个统一的统计框架,填补上述空白。我们的建议,采用基于协议的方法提供了一个新的视角,调查行为结果和大脑的生物学(神经影像学)之间的对齐。虽然标准一致性方法仅限于对相同规模的结果进行评估,但我们在“广义一致性(BSA)”(Peng et al. 2011,JASA特色文章)方面的开创性工作,描述了连续变量和有序变量之间的一致性/对齐性,为本申请中提出的有前途的框架奠定了基础。具体来说,我们计划通过以下方式实现我们的研究目标:用不同的尺度和数据表示来表征结果之间的一致性;合并协变量;评估神经影像学生物标志物和症状域之间的一致性强度;识别与特定症状群一致的高维神经影像学数据中的相关特征;以及评估多中心研究的一致性和校准图像。拟议的统计方法将应用于正在进行的创伤后应激障碍研究和国家多中心成像研究,并将开发用户友好的软件,并提供给一般的研究社区。我们提出的方法的发展将直接有利于心理健康研究,它们是无处不在的,足以成为统计实践的普遍有用的贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Guo其他文献

Ying Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Guo', 18)}}的其他基金

Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
  • 批准号:
    9978956
  • 财政年份:
    2019
  • 资助金额:
    $ 38.79万
  • 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
  • 批准号:
    10159966
  • 财政年份:
    2019
  • 资助金额:
    $ 38.79万
  • 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
  • 批准号:
    10611987
  • 财政年份:
    2019
  • 资助金额:
    $ 38.79万
  • 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
  • 批准号:
    10396640
  • 财政年份:
    2019
  • 资助金额:
    $ 38.79万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    8802230
  • 财政年份:
    2014
  • 资助金额:
    $ 38.79万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    9110314
  • 财政年份:
    2014
  • 资助金额:
    $ 38.79万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    10264896
  • 财政年份:
    2014
  • 资助金额:
    $ 38.79万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    9282512
  • 财政年份:
    2014
  • 资助金额:
    $ 38.79万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    10687870
  • 财政年份:
    2014
  • 资助金额:
    $ 38.79万
  • 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
  • 批准号:
    10475127
  • 财政年份:
    2014
  • 资助金额:
    $ 38.79万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 38.79万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 38.79万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 38.79万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 38.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 38.79万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 38.79万
  • 项目类别:
    Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 38.79万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 38.79万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 38.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 38.79万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了