Biologically Inspired Engineering of Hierarchical Vascular Networks
分层血管网络的生物启发工程
基本信息
- 批准号:8604742
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-10 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgeAmericasAnastomosis - actionAngiogenic FactorAnimal ModelBiologicalBioreactorsBloodBlood VesselsBlood capillariesCardiacCardiac DeathCardiac MyocytesCardiovascular DiseasesCause of DeathCellsCessation of lifeClinicalCoculture TechniquesCoronary ArteriosclerosisCoronary VesselsCountryDiffusionEncapsulatedEndothelial CellsEngineeringEnvironmentGelatinGenerationsGeometryGrowthGrowth FactorHeartHeart DiseasesHeart TransplantationHydrogelsImplantIn VitroIndividualIschemiaLaboratoriesLiquid substanceMechanicsMethodsMicrofabricationMicrofluidicsMicrospheresModelingMolecularMyocardial InfarctionMyocardial tissueMyocardiumNatural regenerationNutrientOrganPatientsPatternPerformancePerfusionPhysiologicalPlatelet-Derived Growth FactorRattusRecurrenceRegulationSignal TransductionSmooth Muscle MyocytesSpecific qualifier valueStructureSurgical AnastomosisSystemTechniquesTechnologyTestingTimeTissue EngineeringTissuesTransplanted tissueTreesTubeVascular Endothelial Growth FactorsVascular blood supplyWorkabdominal aortabaseburden of illnesscapillaryconditioningcrosslinkcytokinedesignexperiencefluid flowimmunogenicityimprovedin vivolithographymillimeterphysical conditioningrepairedscaffold
项目摘要
DESCRIPTION (provided by applicant): There are 1.2 million new or recurrent coronary attacks each year in the U.S, resulting in myocardial infarction or tissue death. The generation of functional cardiac tissue to replace damaged tissue could significantly change the way we currently treat heart disease. Consequently, a robust method of fabricating blood vessels could facilitate growth of larger scale cardiac tissue for treating this increasing burden of disease in America. Our aim in this proposal is to add a vascular network which can supply the cardiac graft with nutrient transport in vitro and be connected to blood supply in vivo. Micro fabrication technologies allow for the spatially precise creation of a cell-instructive environment and will be used to pattern 100 um to 1 mm channels within a graft material. Mimicking physiologic vasculature, the hierarchically organized vascular network of blood vessels will be induced to branch from relatively large (millimeters) to very small (10 um) conduits. Cardiac tissue will be grown around the vessel structure, using a hydrogel encapsulation method. Bioreactors will provide biophysical signaling using a time varying fluid flow regime to mature the blood vessels along with angiogenic cytokines to induce individual capillary sprouting providing transport at the cellular scale. This hierarchical design is particularly important because it creates a specific inlet and outlet for in vitro connectivity and clear ends for surgical anastomosis in vivo, while maintaining a micro vascular network for efficient nutrient delivery. This design bridges the gap between larger scale singular vascular tubes which often lack effective transport to individual cells, and co culture studies with endothelial cells which lack fluid perfusion. The vascular functionality of the cardiac graft will be assessed in vivo an interposition graft in an end to end anastomosis in the rat abdominal aorta. The specific aims of the proposal will be to (1) Use micro fabrication technologies to create a hierarchically designed template for vascular formation, (2) Apply biophysical regulation to induce capillary sprouting, (3) Functionally test the survival and functional perfusion of the cardiac graft in an in vivo rat abdominal aorta model. This project will build upon our laboratory's previous experience and expertise in cardiac tissue engineering with advanced biological micro fabrication techniques, to create a large, perfused cardiac graft that can be used in vivo. We hope that these studies can aid to the overall effort to reduce the national burden of cardiovascular disease, by creating a cardiac patch that can be used for patients suffering from myocardial infarctions and coronary artery disease.
描述(由申请人提供):在美国,每年有120万新的或复发性的冠状动脉攻击,导致心肌梗塞或组织死亡。替代受损组织的功能性心脏组织的产生可能会大大改变我们目前治疗心脏病的方式。因此,制造血管的强大方法可以促进大规模心脏组织的生长,以治疗美国增加的疾病负担。我们在该建议中的目的是增加一个血管网络,该血管网络可以在体外为心脏移植物提供营养转运,并与体内的血液供应相连。微制造技术允许在空间上精确地创建细胞结构环境,并将用于对移植物材料内的100 um至1 mm通道进行图案。模仿生理脉管系统,分层组织的血管血管网络将被诱导从相对较大的(毫米)到非常小(10 um)的导管分支。使用水凝胶封装方法,将在血管结构周围生长心脏组织。生物反应器将使用时间变化的流体流动方式提供生物物理信号传导,以使血管与血管生成细胞因子一起成熟,以诱导单个毛细血管发芽,从而在细胞尺度上提供运输。这种层次设计尤其重要,因为它创建了体外连通性的特定入口和出口,用于体内手术吻合术,同时保持微血管网络以进行有效的营养递送。该设计桥接了较大尺寸的奇异血管管之间通常缺乏有效运输到单个细胞的差异,并与缺乏流体灌注的内皮细胞进行了CO培养研究。心脏移植物的血管功能将在大鼠腹主动脉的端到端吻合中在体内评估。该提案的具体目的是(1)使用微制造技术来创建用于血管形成的层次设计的模板,(2)应用生物物理调节来诱导毛细血管萌芽,(3)在功能上测试在体内型型型型型型腹部,在功能上测试心脏移植的生存和功能性灌注。该项目将基于我们实验室以前的经验和通过先进的生物学微制造技术在心脏组织工程方面的专业知识,以创建可在体内使用的大型,灌注的心脏移植物。我们希望这些研究可以通过创建可用于心肌梗死和冠状动脉疾病的患者的心脏斑块来帮助减轻心血管疾病的全国负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE ENG其他文献
GEORGE ENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE ENG', 18)}}的其他基金
Differential Wnt Dependencies in Colon Epithelium.
结肠上皮细胞中不同的 Wnt 依赖性。
- 批准号:
10739179 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Biologically inspired engineering of hierarchical vascular networks
分层血管网络的生物启发工程
- 批准号:
8256167 - 财政年份:2012
- 资助金额:
$ 2.26万 - 项目类别:
Biologically inspired engineering of hierarchical vascular networks
分层血管网络的生物启发工程
- 批准号:
8427870 - 财政年份:2012
- 资助金额:
$ 2.26万 - 项目类别:
Novel Triorganotins against Adult and Larval Mosquitoes
针对成蚊和幼虫蚊子的新型三有机锡
- 批准号:
6821281 - 财政年份:2004
- 资助金额:
$ 2.26万 - 项目类别:
ORGANOTINS AS POSSIBLE LARVICIDES/INSECTICIDES TO CONTROL MALARIA
有机锡作为可能的杀幼虫剂/杀虫剂来控制疟疾
- 批准号:
6204073 - 财政年份:1999
- 资助金额:
$ 2.26万 - 项目类别:
ORGANOTINS AS POSSIBLE LARVICIDES/INSECTICIDES TO CONTROL MALARIA
有机锡作为可能的杀幼虫剂/杀虫剂来控制疟疾
- 批准号:
6107006 - 财政年份:1998
- 资助金额:
$ 2.26万 - 项目类别:
ORGANOTINS AS POSSIBLE LARVICIDES/INSECTICIDES TO CONTROL MALARIA
有机锡作为可能的杀幼虫剂/杀虫剂来控制疟疾
- 批准号:
6239892 - 财政年份:1997
- 资助金额:
$ 2.26万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
- 批准号:
10649741 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Interrogating human anti-staphylococcal antibody responses for S. aureus vaccine insights
探究人类抗葡萄球菌抗体反应以获得金黄色葡萄球菌疫苗见解
- 批准号:
10826874 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
- 批准号:
10716509 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别: