in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
基本信息
- 批准号:8875981
- 负责人:
- 金额:$ 39.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultBrainColorComplementComputer SimulationDataDendritic SpinesDevelopmentEventExcisionExcitatory SynapseGoalsImageImaging technologyIndividualInhibitory SynapseInterneuronsLabelLeadLengthMethodsMicroscopyModificationMolecularMonitorMusNatureNeocortexNeurodevelopmental DisorderNeuronsOcular DominancePropertySignal TransductionSpecificitySpeedSynapsesSystemTherapeutic InterventionTimeTreesVertebral columnVisualVisual CortexVisual PathwaysVisual Perceptionarea striatacritical periodexperiencehippocampal pyramidal neuronin vivoin vivo imaginginnovationinsightinterestneocorticalpostsynapticpublic health relevanceresponsesensory inputsynaptogenesistemporal measurementtime intervaltwo-photon
项目摘要
DESCRIPTION (provided by applicant): The goal of this proposal is to elucidate the mechanisms of cortical structural plasticity by combining innovative in vivo imaging technology with classical visual manipulations. This integrative approach holds the potential to revolutionize
our understanding of adaptive circuit modification, a fundamental aspect of brain function. Our previous findings show that while pyramidal neurons in layer 2/3 (L2/3) of the adult mouse visual cortex show little, if any, change in branch tip length over time, GABAergic non-pyramidal interneurons display significant dendritic branch tip remodelling driven by visual experience in an input and circuit-specific manner. The fact that structural plasticity of interneurons is continuous through adulthood raises the intriguing possibility that local remodelling of inhibitory
connections may underlie adult cortical plasticity. Yet, how experience alters inhibitory circuitry
is unclear, and how modifications to inhibitory and excitatory circuits are locally coordinated remains unaddressed. Recently, we developed a method for labeling inhibitory synapses in vivo and simultaneously monitored inhibitory synapse and dendritic spine remodeling across the entire dendritic arbor of cortical L2/3 pyramidal neurons in vivo during normal and altered visual experience. We found that the rearrangements of inhibitory synapses and dendritic spines are locally clustered, mainly within 10 µm of each other, the spatial range of local intracellular signaling mechanisms, and that this clustering is influenced by experience. However, previous imaging intervals were typically 4 days. Thus, the nature of the coordinated inhibitory and excitatory synaptic dynamics remained temporally unresolved in terms of whether the two events occur simultaneously or one of the two drives the change, while the other adjusts to it. It is also unclear whether synapses that behave in a coordinated manner are ones driven by specific afferent inputs, and how visual experience increases coordination between excitatory and inhibitory synaptic changes. In this proposal we seek to characterize with high temporal resolution the nature of the coordinated insertion and removal of excitatory synapses and neighboring inhibitory synapses in the neocortical circuit. To this purpose we will implement a newly developed three-color labeling system to independently and simultaneously monitor postsynaptic markers representing the full synaptic complement onto individual L2/3 pyramidal neurons in mouse visual cortex. Using spectrally resolved two-photon microscopy we will 1) monitor the temporal sequence of inhibitory and excitatory synapse remodeling in vivo across the full dendritic arbor of L2/3 pyramidal neurons at short time intervals; 2) monitor the effects f experience-dependent plasticity on coordination of inhibitory and excitatory synapse remodeling; 3) examine the specificity of afferent inputs to coordinated excitatory/inhibitory synaptic pairs. Further, 4) we will develop and implement spectrally resolved multifocal multiphoton microscopy to enhance imaging speed and allow interrogation of synaptic dynamics at even shorter time intervals.
描述(由申请人提供):本提案的目标是通过将创新的体内成像技术与经典的视觉操作相结合来阐明皮质结构可塑性的机制。这种综合方法具有革命性的潜力
我们对自适应电路修改的理解,这是大脑功能的一个基本方面。我们之前的研究结果表明,虽然成年小鼠视觉皮质第2/3层(L2/3)中的锥体神经元随着时间的推移,分支尖端长度几乎没有变化(如果有的话),但GABA能非锥体中间神经元显示出显着的树枝状分支尖端重塑由视觉体验以输入和回路特定的方式驱动。中间神经元的结构可塑性在成年期是连续的,这一事实提出了一种有趣的可能性,即抑制性神经元的局部重塑可能是一种潜在的机制。
连接可能是成人皮质可塑性的基础。然而,经验如何改变抑制回路
目前尚不清楚,抑制性和兴奋性回路的改变如何局部协调仍然没有解决。 最近,我们开发了一种方法,用于标记抑制性突触在体内,同时监测抑制性突触和树突棘重塑在整个树突状乔木的皮质L2/3锥体神经元在体内正常和改变视觉体验。我们发现,抑制性突触和树突棘的重排是局部聚集的,主要在10 μm的范围内,这是局部细胞内信号机制的空间范围,这种聚集受到经验的影响。然而,以前的成像间隔通常为4天。因此,协调的抑制性和兴奋性突触动力学的性质仍然暂时未解决的两个事件是否同时发生或两个驱动器的变化,而另一个调整它。目前还不清楚是否突触的行为在一个协调的方式是由特定的传入输入驱动,以及视觉体验如何增加兴奋性和抑制性突触变化之间的协调。在这个建议中,我们试图以高时间分辨率的性质的协调插入和删除的兴奋性突触和相邻的抑制性突触在新皮层电路的特点。为此,我们将实施一个新开发的三色标记系统,独立地,同时监测突触后标记,代表完整的突触补体到单个L2/3锥体神经元在小鼠视觉皮层。使用光谱分辨双光子显微镜,我们将1)在短时间间隔内监测L2/3锥体神经元的整个树突状结构中抑制性和兴奋性突触重塑的时间序列; 2)监测经验依赖性可塑性对抑制性和兴奋性突触重塑协调的影响; 3)检查传入输入对协调的兴奋性/抑制性突触对的特异性。此外,4)我们将开发和实施光谱分辨多焦点多光子显微镜,以提高成像速度,并允许在更短的时间间隔内询问突触动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elly Nedivi其他文献
Elly Nedivi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elly Nedivi', 18)}}的其他基金
Developing a Strategy for 4-Color in Vivo Two-Photon Imaging
开发体内四色双光子成像策略
- 批准号:
10577846 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10708899 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10570189 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Developing a strategy for 4-color in vivo two-photon imaging
开发 4 色体内双光子成像策略
- 批准号:
10459675 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10512611 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10467534 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9042367 - 财政年份:2015
- 资助金额:
$ 39.76万 - 项目类别:
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
9021702 - 财政年份:2015
- 资助金额:
$ 39.76万 - 项目类别:
in vivo imaging of circuit remodeling in mouse visual cortex
小鼠视觉皮层回路重塑的体内成像
- 批准号:
10207000 - 财政年份:2015
- 资助金额:
$ 39.76万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9254550 - 财政年份:2015
- 资助金额:
$ 39.76万 - 项目类别:
相似海外基金
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Discovery Early Career Researcher Award
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
- 批准号:
10752404 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Adult human brain tissue cultures to study neuroHIV
成人脑组织培养研究神经艾滋病毒
- 批准号:
10619170 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Brain blood flow, oxygenation, and cognition in adult onset iron deficiency anemia
成人缺铁性贫血的脑血流量、氧合和认知
- 批准号:
10735765 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Sleep and brain health: the roles of sleep duration and daytime alertness in cognitive functioning across the adult lifespan
睡眠和大脑健康:睡眠持续时间和白天警觉性在成人一生认知功能中的作用
- 批准号:
2887437 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Studentship
How microglia sense and regulate neuronal activity in the adult brain
小胶质细胞如何感知和调节成人大脑中的神经元活动
- 批准号:
10671376 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Do peers enhance or detract progress in group MI? A look into emerging adult brain and behavior
同伴是否会促进或削弱团体 MI 的进步?
- 批准号:
10582954 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Enhancing adult-born neurons to restore brain functions in Alzheimer's disease
增强成年神经元以恢复阿尔茨海默氏病的大脑功能
- 批准号:
10753894 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
The Immortality and Evolution of Adult Brain Tumors
成人脑肿瘤的永生和进化
- 批准号:
10517210 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别: