Digital Pathology_Accuracy Viewing Behavior and Image Characterization

数字病理学_观看行为和图像表征的准确性

基本信息

  • 批准号:
    8771432
  • 负责人:
  • 金额:
    $ 63.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-12-31 至 2015-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Approximately 1.4 million women per year depend on pathologists to accurately interpret breast biopsies for a diagnosis of benign disease or cancer. Diagnostic errors are alarmingly frequent and likely lead to altered patient treatment, especially at the thresholds of atypical hyperplasia and ductal carcinoma in situ, where up to 50% of cases are misclassified. The causes underlying these errors remain largely unknown. Technology similar to Google Maps now allows pan and zoom manipulation of high-resolution digital images of glass microscope slides. This technology has virtually replaced the microscope in medical schools and is rapidly diffusing into U.S. pathology practices. No research has evaluated the accuracy and efficiency of pathologists' interpretion of digital images vs. glass slides. However, these "digital slides" offer a novel opportunity to study the accuracy, efficiency, and viewing behavior of a large number of pathologists as they manipulate and interpret images. The innovative analytic techniques proposed in this application are similar to those used to improve the performance of pilots and air traffic controllers. Our specific aims are: Aim 1. Digital Image vs. Glass Slides: To compare the interpretive accuracy of pathologists viewing digitized slide images over the Internet to their performance viewing original glass slides under a microscope. A randomized national sample of pathologists (N=200) will interpret 240 test cases in one or both formats in two phases. Measures will include a diagnostic assessment for each test case and for digital slides, cursor- (i.e., mouse) tracking data and region of interest (ROI) markings. Completion of this aim will establish benchmarks for the comparative diagnostic accuracy of whole-slide digital images. Aim 2. Interpretive Screening Behavior: To identify visual scanning patterns associated with diagnostic accuracy and efficiency. Detailed simultaneous eye-tracking and cursor-tracking data will be collected on 60 additional pathologists while they interpret digital slides to complement data from Aim 1. Viewing patterns will be analyzed from computer representations of raw movement data. Videos depicting accurate, efficient visual scanning and cursor movement will be valuable tools in educating the next generation of digital pathologists. Aim 3. Image Analyses: To examine and classify the image characteristics (including color, texture, and structure) of ROIs captured in Aims 1 and 2. Computer-based statistical learning techniques will be used to identify image characteristics that lead to correct and incorrect diagnoses. Characteristics of both diagnostic and distracting ROIs will be identified, linking all three aims. In summary, we will determine whether digitized whole-slide images are diagnostically equivalent to original glass slides. Our in-depth scientific evaluation of viewing patterns and characteristics of ROIs identified by pathologists will be critical to understanding diagnostic errors and sources of distraction. Optimization of viewing techniques will improve diagnostic performance and thus, the quality of clinical care.
描述(由申请人提供):每年约有140万名妇女依靠病理学家准确解释乳腺活检来诊断良性疾病或癌症。诊断错误是惊人的频繁,并可能导致改变患者的治疗,特别是在不典型增生和导管原位癌的阈值,其中高达50%的病例被错误分类。造成这些错误的原因在很大程度上仍然不明。 类似于谷歌地图的技术现在允许对玻璃显微镜载玻片的高分辨率数字图像进行平移和缩放操作。这项技术实际上已经取代了医学院校的显微镜,并迅速扩散到美国病理学实践中。没有研究评估病理学家解释数字图像与载玻片的准确性和效率。然而,这些“数字幻灯片”提供了一个新的机会,研究的准确性,效率和大量的病理学家,因为他们操纵和解释图像的观看行为。本申请中提出的创新分析技术与用于提高飞行员和空中交通管制员绩效的技术相似。我们的具体目标是:目标1。数字图像与载玻片:比较病理学家通过互联网查看数字化载玻片图像与在显微镜下查看原始载玻片的判读准确性。病理学家的随机国家样本(N=200)将在两个阶段中以一种或两种格式解释240个测试用例。措施将包括对每个测试用例和数字载玻片的诊断评估,光标(即,鼠标)跟踪数据和感兴趣区域(ROI)标记。这一目标的完成将为全切片数字图像的比较诊断准确性建立基准。 目标二。解释性筛查行为:识别与诊断准确性和效率相关的视觉扫描模式。将收集另外60名病理学家的详细同步眼动跟踪和光标跟踪数据,同时他们解释数字载玻片以补充目标1的数据。观察模式将从原始运动数据的计算机表示进行分析。描述准确,高效的视觉扫描和光标移动的视频将是教育下一代数字病理学家的宝贵工具。目标3.图像分析:检查和分类目标1和2中捕获的ROI的图像特征(包括颜色、纹理和结构)。基于计算机的统计学习技术将用于识别导致正确和错误诊断的图像特征。诊断和分散ROI的特征将被确定,连接所有三个目标。总之,我们将确定数字化全载玻片图像在诊断上是否等同于原始载玻片。我们对病理学家确定的ROI的观察模式和特征进行了深入的科学评估,这对于理解诊断错误和分心来源至关重要。观察技术的优化将提高诊断性能,从而提高临床护理质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOANN G ELMORE其他文献

JOANN G ELMORE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOANN G ELMORE', 18)}}的其他基金

Metacognition and the Diagnostic Process in Pathology
元认知和病理学诊断过程
  • 批准号:
    10284893
  • 财政年份:
    2021
  • 资助金额:
    $ 63.95万
  • 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
  • 批准号:
    10165663
  • 财政年份:
    2018
  • 资助金额:
    $ 63.95万
  • 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
  • 批准号:
    10388503
  • 财政年份:
    2018
  • 资助金额:
    $ 63.95万
  • 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
  • 批准号:
    9925189
  • 财政年份:
    2018
  • 资助金额:
    $ 63.95万
  • 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
  • 批准号:
    10407524
  • 财政年份:
    2018
  • 资助金额:
    $ 63.95万
  • 项目类别:
Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
  • 批准号:
    9976466
  • 财政年份:
    2017
  • 资助金额:
    $ 63.95万
  • 项目类别:
Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
  • 批准号:
    9751222
  • 财政年份:
    2017
  • 资助金额:
    $ 63.95万
  • 项目类别:
Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
  • 批准号:
    9174605
  • 财政年份:
    2016
  • 资助金额:
    $ 63.95万
  • 项目类别:
Reducing Errors in the Diagnosis of Melanoma and Melanocytic Lesions
减少黑色素瘤和黑色素细胞病变的诊断错误
  • 批准号:
    9005424
  • 财政年份:
    2016
  • 资助金额:
    $ 63.95万
  • 项目类别:
Digital Pathology_Accuracy Viewing Behavior and Image Characterization
数字病理学_观看行为和图像表征的准确性
  • 批准号:
    8970690
  • 财政年份:
    2012
  • 资助金额:
    $ 63.95万
  • 项目类别:

相似国自然基金

湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
  • 批准号:
    51976048
  • 批准年份:
    2019
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
  • 批准号:
    2335500
  • 财政年份:
    2024
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
Catalyzing Sustainable Air Travel: Unveiling Consumer Willingness to Pay for Sustainable Aviation Fuel through Information Treatment in Choice Experiment and Cross-Country Analysis
促进可持续航空旅行:通过选择实验和跨国分析中的信息处理揭示消费者支付可持续航空燃油的意愿
  • 批准号:
    24K16365
  • 财政年份:
    2024
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
COMPAS: co integration of microelectronics and photonics for air and water sensors
COMPAS:微电子学和光子学的共同集成,用于空气和水传感器
  • 批准号:
    10108154
  • 财政年份:
    2024
  • 资助金额:
    $ 63.95万
  • 项目类别:
    EU-Funded
Simulating Urban Air Pollution In The Lab
在实验室模拟城市空气污染
  • 批准号:
    MR/Y020014/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Fellowship
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333683
  • 财政年份:
    2024
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333684
  • 财政年份:
    2024
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Continuing Grant
CRII: CSR: Towards an Edge-enabled Software-Defined Vehicle Framework for Dynamic Over-the-Air Updates
CRII:CSR:迈向支持边缘的软件定义车辆框架,用于动态无线更新
  • 批准号:
    2348151
  • 财政年份:
    2024
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
  • 批准号:
    24K17404
  • 财政年份:
    2024
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
AIR QUALITY AND HEALTH IMPACT OF PRIMARY SEMI-VOLATILE AND SECONDARY PARTICLES AND THEIR ABATEMENT
一次半挥发性颗粒和二次颗粒对空气质量和健康的影响及其消除
  • 批准号:
    10100997
  • 财政年份:
    2024
  • 资助金额:
    $ 63.95万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了