Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
基本信息
- 批准号:9925189
- 负责人:
- 金额:$ 62.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-12 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:BehaviorBreastBreast DiseasesBreast biopsyCertificationChemotherapy and/or radiationClinicalCognitionCognitiveComplexConsultationsCountryCross-Sectional StudiesDataData CollectionDevelopmentDiagnosisDiagnosticDiagnostic ErrorsEducationFDA approvedFundingFutureGlassHistopathologyHumanImageImage AnalysisKnowledgeMalignant NeoplasmsMastectomyMedical ImagingModelingOperative Surgical ProceduresPathologicPathologistPathologyPathology processesPatient CarePatientsPerceptionPhysiciansProcessRadiation therapyReaderRecommendationRecording of previous eventsResearchResearch DesignResidenciesScreening for cancerSecond OpinionsShippingSiteSlideTechnologyTestingTimeTrainingTraining ProgramsUnited States National Institutes of HealthVisualVisual PerceptionWorkaccurate diagnosisanticancer researchapprenticeshipbasecancer diagnosisclinical practiceclinical research sitecognitive processdesigndiagnostic accuracydigitaldigital imagingexperiencehigh resolution imagingimprovedinnovationlongitudinal analysismalignant breast neoplasmmedical schoolsmultidisciplinarynext generationprogramsrecruitskillssynergismtoolvisual trackingwhole slide imaging
项目摘要
Accurate pathologic diagnoses are the cornerstone of both patient care and cancer
research. The diagnostic process requires complex visual perceptual tasks interacting with cognitive
processes, yet little research has been done to understand and potentially improve how skills needed
for accurate diagnoses are acquired. There is an especially profound lack of data on the interpretative
process in the field of pathology. Our prior work identified a concerning level of diagnostic
disagreement and errors in the interpretation of breast biopsies related to cancer screening and
millions of breast biopsies are obtained each year. The proposed research will help improve the
accuracy of pathologists diagnosing breast disease and cancer.
We will examine breast pathology interpretation in residents and experienced pathologists while
they interpret medical images to understand how expertise develops across the entire diagnosis
process from primary diagnoses to second opinions. First, we will examine the development of
expertise among pathology resident trainees at ten U.S. medical schools in both cross-sectional
analysis (Aim 1a) and in a longitudinal analysis gathering data on the same residents annually over
three years of training (Aim 1b). Concurrently, we will study the perceptual and cognitive origins of
diagnostic accuracy and errors among experienced pathologists while they interpret images for
primary diagnosis (Aim 2). Pathologists from Aim 2 will then be asked to provide “second opinions”
on cases to characterize how knowledge of an initial diagnosis impacts the interpretive process when
providing diagnostic second opinions (Aim 3). Using data from Aims 1-3, we will develop and test a
pilot educational program (Aim 4) designed to facilitate the development of expertise in pathology.
The proposed work is innovative in the use of cutting-edge digital whole slide images and
recording eye tracking and high-resolution image navigation behavior and in our plan to follow the
same residents longitudinally as they progress in training over three years. Providing diagnoses using
digital imaging, recently approved by the FDA, is in the future of pathology; our work will both improve
the diagnostic accuracy of current practicing pathologists and guide training the next generation.
Strengths of our application include 1) our multidisciplinary team with experience leading similar
multi-site R01-funded studies; 2) an efficient data collection plan that leverages access to existing
well-characterized breast biopsy cases, a fully developed image viewing and tracking tool, and
synergy between the Aims; 3) unparalleled access to >200 pathologists from ten clinical sites across
the country; and 4) a history of successful physician recruitment into similar studies.
准确的病理诊断是病人护理和癌症的基石
research.诊断过程需要复杂的视觉感知任务,
过程,但很少有研究已经做了了解和潜在的改善如何需要的技能
准确的诊断。特别是缺乏关于解释性的数据,
病理学领域的一个过程。我们先前的工作确定了一个有关的诊断水平,
在与癌症筛查相关的乳腺活检解释中存在分歧和错误,
每年进行数百万次乳房活组织检查。拟议的研究将有助于改善
病理学家诊断乳腺疾病和癌症的准确性。
我们将检查住院医师和有经验的病理学家对乳腺病理学的解释,
他们解读医学图像,以了解专业知识在整个诊断过程中的发展情况,
从初步诊断到第二意见。首先,我们将研究
在美国十所医学院的病理学住院实习生中,
分析(目标1a)和纵向分析,每年收集同一居民的数据,
三年培训(目标1b)。同时,我们将研究的知觉和认知的起源,
有经验的病理学家在解释图像时的诊断准确性和错误,
主要诊断(目标2)。Aim 2的病理学家将被要求提供“第二意见”
对病例进行分析,以确定初次诊断的知识如何影响解释过程,
提供诊断性第二意见(目标3)。利用目标1-3的数据,我们将开发和测试一个
试点教育计划(目标4),旨在促进病理学专业知识的发展。
拟议的工作是创新的使用尖端的数字整体幻灯片图像和
记录眼球跟踪和高分辨率图像导航行为,并在我们的计划,以遵循
在三年的培训中,他们纵向地学习相同的住院医生。提供诊断使用
数字成像,最近被FDA批准,是病理学的未来;我们的工作都将改善
当前执业病理学家的诊断准确性,并指导下一代的培训。
我们的应用程序的优势包括1)我们的多学科团队,具有领导类似
多中心R 01资助的研究; 2)有效的数据收集计划,利用现有的
充分表征的乳腺活检病例,完全开发的图像查看和跟踪工具,以及
目标之间的协同作用; 3)无与伦比的访问来自10个临床站点的200多名病理学家
国家;和4)成功的医生招募到类似的研究的历史。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOANN G ELMORE其他文献
JOANN G ELMORE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOANN G ELMORE', 18)}}的其他基金
Metacognition and the Diagnostic Process in Pathology
元认知和病理学诊断过程
- 批准号:
10284893 - 财政年份:2021
- 资助金额:
$ 62.61万 - 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
- 批准号:
10388503 - 财政年份:2018
- 资助金额:
$ 62.61万 - 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
- 批准号:
10165663 - 财政年份:2018
- 资助金额:
$ 62.61万 - 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
- 批准号:
10407524 - 财政年份:2018
- 资助金额:
$ 62.61万 - 项目类别:
Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
- 批准号:
9976466 - 财政年份:2017
- 资助金额:
$ 62.61万 - 项目类别:
Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
- 批准号:
9751222 - 财政年份:2017
- 资助金额:
$ 62.61万 - 项目类别:
Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
- 批准号:
9174605 - 财政年份:2016
- 资助金额:
$ 62.61万 - 项目类别:
Reducing Errors in the Diagnosis of Melanoma and Melanocytic Lesions
减少黑色素瘤和黑色素细胞病变的诊断错误
- 批准号:
9005424 - 财政年份:2016
- 资助金额:
$ 62.61万 - 项目类别:
Digital Pathology_Accuracy Viewing Behavior and Image Characterization
数字病理学_观看行为和图像表征的准确性
- 批准号:
8771432 - 财政年份:2012
- 资助金额:
$ 62.61万 - 项目类别:
Digital Pathology_Accuracy Viewing Behavior and Image Characterization
数字病理学_观看行为和图像表征的准确性
- 批准号:
8970690 - 财政年份:2012
- 资助金额:
$ 62.61万 - 项目类别:
相似海外基金
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
- 批准号:
EP/Y03693X/1 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Research Grant
From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
- 批准号:
EP/Y001613/1 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Research Grant
Quad negative breast cancerに対する新たなプレシジョン・メディシン治療戦略
四阴性乳腺癌精准医学治疗新策略
- 批准号:
24K11748 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Preclinical validation of synthetic biomolecules to treat Breast Cancer from AI-enabled discovery of novel lncRNA therapeutic targets.
通过人工智能发现新型 lncRNA 治疗靶点,对合成生物分子治疗乳腺癌进行临床前验证。
- 批准号:
10110204 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Launchpad
ESR1 mutation profiling identifies potential drivers of metastatic breast cancer
ESR1 突变分析确定了转移性乳腺癌的潜在驱动因素
- 批准号:
MR/X018199/1 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Research Grant
Spatial-BrTME: Multicellular spatial dynamics of immunotherapy response in breast cancer
Spatial-BrTME:乳腺癌免疫治疗反应的多细胞空间动力学
- 批准号:
EP/Y014995/1 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Research Grant
Enhancements to design and testing of Body Aspect's breast volume measurement software
Body Aspect 乳房体积测量软件的设计和测试得到增强
- 批准号:
10074432 - 财政年份:2023
- 资助金额:
$ 62.61万 - 项目类别:
Collaborative R&D
Decoding the impact of single cell mutational processes in triple negative breast cancer and high grade serous ovarian cancer
解读单细胞突变过程对三阴性乳腺癌和高级别浆液性卵巢癌的影响
- 批准号:
477662 - 财政年份:2023
- 资助金额:
$ 62.61万 - 项目类别:
Operating Grants
225Ac-labeled anti-nectin-4 radioimmunoconjugate with/without immune checkpoint blockage in triple negative breast cancer.
225Ac 标记的抗 nectin-4 放射免疫缀合物,有/没有免疫检查点阻断治疗三阴性乳腺癌。
- 批准号:
488261 - 财政年份:2023
- 资助金额:
$ 62.61万 - 项目类别:
Operating Grants
Identifying the molecular and environmental factors involved in promoting escape from breast cancer dormancy.
确定参与促进乳腺癌休眠逃逸的分子和环境因素。
- 批准号:
488246 - 财政年份:2023
- 资助金额:
$ 62.61万 - 项目类别:
Operating Grants