Generation and description of neuronal morphology and connectivity
神经元形态和连接的生成和描述
基本信息
- 批准号:8630669
- 负责人:
- 金额:$ 32.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAlzheimer&aposs DiseaseAnimal ModelAreaBackBiological MarkersBiophysicsBrainBrain regionCodeCognitiveCollaborationsCommunitiesComplexComputer SimulationComputer softwareDataDatabasesDerivation procedureDevelopmentDiseaseElectronicsEpilepsyFosteringFunctional disorderFundingGenerationsGoalsGrantGrowthHippocampal FormationHippocampus (Brain)ImageImageryImpairmentIndividualInformaticsInformation TechnologyInternetKnowledgeLabelLearning DisabilitiesLinkMeasuresMembraneMemoryMicroscopicMicrotubulesModelingMolecularMorphologyNeural Network SimulationNeuronsNeurosciencesNeurosciences ResearchOntologyPaperPatternPeer ReviewPhenotypePhysiologicalPlayPreparationProductivityPropertyPublic HealthPublicationsPublishingReportingResearchResearch InfrastructureResearch PersonnelResource SharingResourcesReview LiteratureRoleScientistSemanticsShapesSignal TransductionSimulateSourceStagingStretchingStrokeStructureStructure-Activity RelationshipSynapsesSystemTechniquesTechnologyTestingTimeTrainingTreesVertebral columnWorkbasecell typecognitive functiondensitydesigndigitaldistributed dataentorhinal cortexgenetic manipulationinnovationknowledge baselight microscopymembrane modelmultidisciplinarynervous system disorderneuroinformaticsneuropathologynovelopen sourcepeerpredictive modelingprogramspublic health relevancereconstructionrepositoryresearch studysimulationtooltransmission processusabilityuser-friendly
项目摘要
Dendritic and axonal morphologies play fundamental roles in physiological brain function and
pathological dysfunction by affecting synaptic integration, spike train transmission, and circuit
connectivity. Incorporating existing and forthcoming experimental data into accurate, full-scale,
and biologically plausible neural network simulations is important for quantitatively bridging the
sub-cellular and systems-levels. We successfully designed, implemented, and freely distributed
to the community computer software and databases to reconstruct, analyze, visualize, simulate,
and share the 3D tree-like shape of neurons from many labeling and visualization techniques,
developmental stages, and experimental conditions. We imaged by light microscopy, digitally
traced, and shared new data, and we provided our peers with the electronic means of freely
doing the same. Moreover, we combined those data with computational models of membrane
biophysics to investigate the neuronal structure-activity relationship. We propose to expand this
research approach with two specific aims. The first is to augment the power, scope, and
usability of the NeuroMorpho.Org repository of digital tracings. We plan to triple the number of
shared reconstructions, adding new species, brain regions, and neuron types. Moreover, we will
enhance the search functionality with a "semantic" engine using state-of-the-art ontologies. We
will also extend the domain and format of distributed data to include circuitry, multi-channel
information, and temporal sequences. The second aim is to develop a new knowledge base of
neuron types in the hippocampus and entorhinal cortex by quantifying their morphological,
physiological, and molecular properties from published reports. The hippocampal formation is
one of the most studied brain regions, underlies autobiographic memory storage and spatial
representation, and is prominently involved in devastating neurological disease, including
epilepsy and Alzheimer's. Yet, our conceptual understanding of how the hippocampus works is
limited compared to the wealth of available knowledge about its neurons, because it is difficult to
find and integrate all relevant data scattered in thousands of papers. We will identify all
published information and annotate it with specific pointers to the source documents in the peer-
reviewed literature. The resulting open-source portal (Hippocampome.Org) will enable the
derivation of potential circuit connectivity and the predictive simulation of network-wide spiking
activity. We will make this application especially relevant to neuropathology by linking specific
neuron types to diseases involving the hippocampus, and demonstrate its potential with a new
model of learning disabilities based on impaired structural plasticity.
树突和轴突的形态在生理脑功能和
影响突触整合、棘波传递和回路的病理性功能障碍
连通性。将现有和即将到来的实验数据整合到准确的、全面的、
生物学上看似合理的神经网络模拟对于定量地连接
亚细胞级和系统级。我们成功地设计、实现并免费分发
社区计算机软件和数据库,以重建、分析、可视化、模拟、
并共享来自许多标记和可视化技术的神经元的3D树状形状,
发育阶段和实验条件。我们用光学显微镜进行了数字化成像
跟踪和共享新数据,我们为同行提供了免费的电子手段
做着同样的事。此外,我们还将这些数据与膜的计算模型相结合
生物物理学,研究神经元的结构-活性关系。我们建议扩大这一范围
研究方法有两个具体目的。一是加大力度,扩大范围,扩大
神经形态组织数字痕迹资料库的可用性。我们计划将数量增加两倍
共享重建,添加新物种、大脑区域和神经元类型。此外,我们还将
使用最先进的本体论,通过“语义”引擎增强搜索功能。我们
还将扩展分布式数据的域和格式,以包括电路、多通道
信息和时间序列。第二个目标是开发一个新的知识库
通过量化海马区和内嗅区皮质的形态,
来自已发表报告的生理和分子特性。海马区结构是
研究最多的大脑区域之一,是自传记忆存储和空间记忆的基础
代表,并显著参与毁灭性的神经疾病,包括
癫痫和阿尔茨海默氏症。然而,我们对海马体如何工作的概念性理解是
与关于其神经元的丰富可用知识相比,这是有限的,因为很难
找到并整合分散在数千篇论文中的所有相关数据。我们将确定所有
发布信息,并使用指向同级中的源文档的特定指针对其进行注释-
回顾了相关文献。由此产生的开源门户(Hippocampome.Org)将支持
潜在电路连通性的推导和全网尖峰的预测模拟
活动。我们将通过链接特定的特定应用程序,使此应用程序与神经病理学特别相关
神经元类型对涉及海马体的疾病,并展示其潜力与一种新的
基于结构可塑性受损的学习障碍模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GIORGIO A ASCOLI其他文献
GIORGIO A ASCOLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GIORGIO A ASCOLI', 18)}}的其他基金
Long-range neuronal projections: circuit blueprint or stochastic targeting? Rigorous classification of brain-wide axonal reconstructions
远程神经元投射:电路蓝图还是随机目标?
- 批准号:
10360723 - 财政年份:2021
- 资助金额:
$ 32.51万 - 项目类别:
Anatomical characterization of neuronal cell types of the mouse brain
小鼠大脑神经元细胞类型的解剖学特征
- 批准号:
10262970 - 财政年份:2020
- 资助金额:
$ 32.51万 - 项目类别:
Anatomical characterization of neuronal cell types of the mouse brain
小鼠大脑神经元细胞类型的解剖学特征
- 批准号:
10225863 - 财政年份:2020
- 资助金额:
$ 32.51万 - 项目类别:
Anatomical characterization of neuronal cell types of the mouse brain
小鼠大脑神经元细胞类型的解剖学特征
- 批准号:
9567222 - 财政年份:2017
- 资助金额:
$ 32.51万 - 项目类别:
Cytoskeletal mechanisms of dendrite arbor shape development
树突乔木形状发育的细胞骨架机制
- 批准号:
10649463 - 财政年份:2013
- 资助金额:
$ 32.51万 - 项目类别:
Cytoskeletal mechanisms of dendrite arbor shape development
树突乔木形状发育的细胞骨架机制
- 批准号:
10162670 - 财政年份:2013
- 资助金额:
$ 32.51万 - 项目类别:
Cytoskeletal mechanisms of dendrite arbor shape development
树突乔木形状发育的细胞骨架机制
- 批准号:
10404546 - 财政年份:2013
- 资助金额:
$ 32.51万 - 项目类别:
Reconstruction and Mapping of Human Brain Vasculature
人脑脉管系统的重建和绘图
- 批准号:
7860671 - 财政年份:2009
- 资助金额:
$ 32.51万 - 项目类别:
Neuroinformatics of the Hippocampus: From System-Level to Neuronal Arborizations
海马体的神经信息学:从系统级到神经元树枝化
- 批准号:
7532436 - 财政年份:2008
- 资助金额:
$ 32.51万 - 项目类别:
ANATOMICALLY ACCURATE NEURAL NETWORKS: BUILDING A HIPPOCAMPUS
解剖学上精确的神经网络:构建海马体
- 批准号:
7369377 - 财政年份:2006
- 资助金额:
$ 32.51万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 32.51万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 32.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 32.51万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 32.51万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 32.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 32.51万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 32.51万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 32.51万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 32.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 32.51万 - 项目类别:
Studentship