Development of a Multimodal Deep Learning Model for the Generation of Cancer Probability Maps and Imaging Biomarkers for Prostate Cancer using Multiparametric MRI
使用多参数 MRI 开发用于生成前列腺癌癌症概率图和成像生物标志物的多模态深度学习模型
基本信息
- 批准号:9723045
- 负责人:
- 金额:$ 3.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAlgorithmsAmericanAreaBeliefBiological MarkersBiopsyCaringClassificationClinicalClinical DataComplexComputer-Assisted DiagnosisConsensusDataData SetDetectionDevelopmentDiseaseEngineeringEvaluationFutureGenerationsGoalsGuidelinesHistopathologyHospitalsHumanImageIncidenceIndividualIndolentLearningLesionMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateManualsMapsMedicalMedical HistoryMedical RecordsMethodologyMethodsModalityModelingMorbidity - disease rateNational Comprehensive Cancer NetworkNewly DiagnosedOutcome MeasurePathologyPatientsPhysiologic pulsePopulationProbabilityProcessProstateProstate AdenocarcinomaProstatectomyRadical ProstatectomyRecording of previous eventsResearchRiskRisk FactorsScreening for Prostate CancerScreening procedureSensitivity and SpecificitySerumSiteSpecificitySpecimenSystemTechniquesTestingTissuesTrainingTransrectal UltrasoundUnited StatesVisualWorkautoencoderbasecancer diagnosiscancer therapyconvolutional neural networkcostdeep learningdeep learning algorithmdenoisingdigitalfollow-uphigh riskimaging Segmentationimaging biomarkerimprovedinnovationinsightinterestmenmortalitymultimodalitynon-linear transformationnovelpredictive modelingprimary outcomepublic health relevanceradiologistrectalrisk stratificationroutine screeningscreeningscreening guidelinessecondary outcomeserum PSAspatiotemporalsupport vector machinetool
项目摘要
Project Summary/Abstract
Background: Prostatic adenocarcinoma is the most common newly diagnosed cancer and second deadliest
cancer in American men. There is a large discrepancy between the incidence of the disease and its mortality rate.
Thus, the development of screening tools to identify prostate cancer and determine if it is aggressive or indolent
is an area of considerable interest. Current methods rely on the use of serum biomarkers and follow-up biopsies
for screening. However, there is substantial debate as to the appropriate methodology for screening. The goal of
this proposal is the development of: 1) new imaging biomarkers (i.e., “features”) for prostate cancer; and 2) a
novel predictive model for the presence of aggressive prostatic adenocarcinoma. These tools will enable more
effective use of mp-MRI in prostate cancer screening in the future and thus enable a future improvement in the
sensitivity and specificity of screening, reducing the rates of overdiagnosis and underdiagnosis.
Aim 1: To implement a deep learning algorithm for clinical prostate mp-MRI sequences, creating a cancer prob-
ability map that is predictive of biopsy results.
Aim 2: To create a multimodal framework that will combine discovered imaging features with clinical data
points from the medical record (e.g., age, risk factors, medical history, biomarkers) to predict the presence and
aggressiveness of prostatic adenocarcinoma.
Methods: In Aim 1, a deep convolutional neural network (CNN) will be trained on a clinical dataset comprised
of patches extracted from pre-prostatectomy mp-MRI sequences from patients with prostate cancer, using his-
topathology analysis of whole-mount radical prostatectomy specimens as ground truth. The innovations in this
aim will be the development of a CNN that can simultaneously learn from three different imaging sequence types,
the use of patches for data augmentation, and the proper alignment of mp-MRI sequences and prostatectomy
specimens for machine learning. The result of the work of this aim will be the creation of an algorithm for gen-
erating imaging biomarkers (features) and cancer probability maps from mp-MRI data. In Aim 2, a multimodal
learning framework that will integrate mp-MRI sequence data with clinical parameters in order to predict the
presence of aggressive prostatic adenocarcinoma will be developed. The innovation in this aim will be the devel-
opment of a framework that can integrate information from multiple modalities (imaging, serum, history, etc.)
in order to generate a high confidence prediction of the presence of aggressive prostate cancer without the use of
invasive testing.
Long-term Objective: The development of a novel predictive model for the presence of aggressive prostatic
adenocarcinoma in prostate mp-MRI data that will enable better future use of this data for the early detection of
prostate cancer.
项目总结/摘要
背景:前列腺腺癌是最常见的新诊断的癌症和第二致命的
美国男性的癌症这种疾病的发病率和死亡率之间有很大的差距。
因此,开发筛查工具来识别前列腺癌并确定它是侵袭性的还是惰性的,
是一个相当令人感兴趣的领域。目前的方法依赖于使用血清生物标志物和后续活检
用于筛选。然而,对于适当的筛查方法存在着大量的争论。的目标
该建议是开发:1)新的成像生物标记物(即,2)前列腺癌的特征;以及
侵袭性前列腺腺癌存在的新预测模型。这些工具将使更多
MP-MRI在未来前列腺癌筛查中的有效使用,从而能够在未来改善
筛查的敏感性和特异性,减少过度诊断和诊断不足的比率。
目的1:为临床前列腺mp-MRI序列实现深度学习算法,创建癌症探针,
预测活检结果的能力图。
目标2:创建一个多模态框架,将联合收割机发现的成像特征与临床数据相结合
来自医疗记录的点(例如,年龄、风险因素、病史、生物标志物)来预测存在和
前列腺腺癌的侵袭性。
方法:在目标1中,深度卷积神经网络(CNN)将在临床数据集上进行训练,
使用他的-从前列腺癌患者的前列腺切除术前mp-MRI序列中提取的贴片
作为基础事实的全包埋根治性直肠癌切除术标本的病理学分析。这方面的创新
目标是开发一种CNN,它可以同时从三种不同的成像序列类型中学习,
使用补丁进行数据增强,以及mp-MRI序列和椎间盘切除术的正确对齐
机器学习的样本。这一目标的工作的结果将是创建一个算法,用于生成-
从mp-MRI数据中生成成像生物标志物(特征)和癌症概率图。在目标2中,
将mp-MRI序列数据与临床参数相结合,以预测
将出现侵袭性前列腺腺癌。在这一目标上的创新将是发展-
可以整合来自多种模态(成像、血清、病史等)的信息的框架的开发
为了产生侵袭性前列腺癌存在的高置信度预测而不使用
侵入性测试
长期目标:建立一种新的预测侵袭性前列腺的模型
前列腺腺癌的mp-MRI数据,这将使未来更好地利用这些数据进行早期检测,
前列腺癌
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karthik Venkataraman Sarma其他文献
Karthik Venkataraman Sarma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karthik Venkataraman Sarma', 18)}}的其他基金
Development of a Multimodal Deep Learning Model for the Generation of Cancer Probability Maps and Imaging Biomarkers for Prostate Cancer using Multiparametric MRI
使用多参数 MRI 开发用于生成前列腺癌癌症概率图和成像生物标志物的多模态深度学习模型
- 批准号:
9516954 - 财政年份:2016
- 资助金额:
$ 3.95万 - 项目类别:
Development of a Multimodal Deep Learning Model for the Generation of Cancer Probability Maps and Imaging Biomarkers for Prostate Cancer using Multiparametric MRI
使用多参数 MRI 开发用于生成前列腺癌癌症概率图和成像生物标志物的多模态深度学习模型
- 批准号:
10403479 - 财政年份:2016
- 资助金额:
$ 3.95万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 3.95万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 3.95万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 3.95万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 3.95万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 3.95万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 3.95万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 3.95万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 3.95万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 3.95万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 3.95万 - 项目类别:
Directed Grant