Development of a Multimodal Deep Learning Model for the Generation of Cancer Probability Maps and Imaging Biomarkers for Prostate Cancer using Multiparametric MRI

使用多参数 MRI 开发用于生成前列腺癌癌症概率图和成像生物标志物的多模态深度学习模型

基本信息

项目摘要

Project Summary/Abstract Background: Prostatic adenocarcinoma is the most common newly diagnosed cancer and second deadliest cancer in American men. There is a large discrepancy between the incidence of the disease and its mortality rate. Thus, the development of screening tools to identify prostate cancer and determine if it is aggressive or indolent is an area of considerable interest. Current methods rely on the use of serum biomarkers and follow-up biopsies for screening. However, there is substantial debate as to the appropriate methodology for screening. The goal of this proposal is the development of: 1) new imaging biomarkers (i.e., “features”) for prostate cancer; and 2) a novel predictive model for the presence of aggressive prostatic adenocarcinoma. These tools will enable more effective use of mp-MRI in prostate cancer screening in the future and thus enable a future improvement in the sensitivity and specificity of screening, reducing the rates of overdiagnosis and underdiagnosis. Aim 1: To implement a deep learning algorithm for clinical prostate mp-MRI sequences, creating a cancer prob- ability map that is predictive of biopsy results. Aim 2: To create a multimodal framework that will combine discovered imaging features with clinical data points from the medical record (e.g., age, risk factors, medical history, biomarkers) to predict the presence and aggressiveness of prostatic adenocarcinoma. Methods: In Aim 1, a deep convolutional neural network (CNN) will be trained on a clinical dataset comprised of patches extracted from pre-prostatectomy mp-MRI sequences from patients with prostate cancer, using his- topathology analysis of whole-mount radical prostatectomy specimens as ground truth. The innovations in this aim will be the development of a CNN that can simultaneously learn from three different imaging sequence types, the use of patches for data augmentation, and the proper alignment of mp-MRI sequences and prostatectomy specimens for machine learning. The result of the work of this aim will be the creation of an algorithm for gen- erating imaging biomarkers (features) and cancer probability maps from mp-MRI data. In Aim 2, a multimodal learning framework that will integrate mp-MRI sequence data with clinical parameters in order to predict the presence of aggressive prostatic adenocarcinoma will be developed. The innovation in this aim will be the devel- opment of a framework that can integrate information from multiple modalities (imaging, serum, history, etc.) in order to generate a high confidence prediction of the presence of aggressive prostate cancer without the use of invasive testing. Long-term Objective: The development of a novel predictive model for the presence of aggressive prostatic adenocarcinoma in prostate mp-MRI data that will enable better future use of this data for the early detection of prostate cancer.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karthik Venkataraman Sarma其他文献

Karthik Venkataraman Sarma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karthik Venkataraman Sarma', 18)}}的其他基金

Development of a Multimodal Deep Learning Model for the Generation of Cancer Probability Maps and Imaging Biomarkers for Prostate Cancer using Multiparametric MRI
使用多参数 MRI 开发用于生成前列腺癌癌症概率图和成像生物标志物的多模态深度学习模型
  • 批准号:
    10403479
  • 财政年份:
    2016
  • 资助金额:
    $ 3.8万
  • 项目类别:
Development of a Multimodal Deep Learning Model for the Generation of Cancer Probability Maps and Imaging Biomarkers for Prostate Cancer using Multiparametric MRI
使用多参数 MRI 开发用于生成前列腺癌癌症概率图和成像生物标志物的多模态深度学习模型
  • 批准号:
    9723045
  • 财政年份:
    2016
  • 资助金额:
    $ 3.8万
  • 项目类别:

相似国自然基金

靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
  • 批准号:
    JCZRQN202500010
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
  • 批准号:
    2025JJ70209
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
  • 批准号:
    2023JJ50274
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
  • 批准号:
    81973577
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
  • 批准号:
    81602908
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
  • 批准号:
    81501928
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 3.8万
  • 项目类别:
    EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
  • 批准号:
    MR/X032809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
  • 批准号:
    MR/X034690/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
  • 批准号:
    2335955
  • 财政年份:
    2024
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
  • 批准号:
    DP240103257
  • 财政年份:
    2024
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
  • 批准号:
    DP240100408
  • 财政年份:
    2024
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
  • 批准号:
    DP240100111
  • 财政年份:
    2024
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
  • 批准号:
    502786
  • 财政年份:
    2024
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Directed Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了