Neural and computational mechanisms of selective attention in decision making
决策中选择性注意的神经和计算机制
基本信息
- 批准号:8727105
- 负责人:
- 金额:$ 36.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-18 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAreaAttentionAttention Deficit DisorderAvocadoBasal GangliaBehaviorBehavioralBrainCategoriesChoice BehaviorClinicalCognitiveCognitive ScienceColorComplexComputer SimulationComputing MethodologiesConcept FormationCorpus striatum structureDataDecision MakingDimensionsDiseaseDrug abuseEnvironmentFaceFeedbackFruitFunctional Magnetic Resonance ImagingFutureGoalsHeightHousingHumanIndividualIndividual DifferencesInterventionKnowledgeLearningLeftLightLiteratureLocationMarketingMeasuresMethodsModelingOutcomeParietalPatternPerformancePopulationProcessPsychological reinforcementResearchRewardsSchizophreniaShapesSideSorting - Cell MovementSourceSpeedStagingStimulusTestingTimeWisconsinWorkbasecognitive functionexperienceimprovedneuroimagingneuromechanismrelating to nervous systemresearch studyselective attentiontool
项目摘要
DESCRIPTION (provided by applicant): Neural and computational mechanisms of selective attention in experience-based decision making In order to make correct decisions, we must learn from our past experiences. Learning has long been conceptualized as the formation of associations between stimuli and outcomes. But how should we define these "stimuli" in real-world decision making environments that are complex and multidimensional? It would seem most optimal to learn about all available stimulus features (height, color, shape, etc.). However, in natural environments only few dimensions are relevant to performance of any given task. Attending to and learning about only those dimensions that are relevant to the task at hand (and ignoring all others) improves performance, speeding learning and simplifying generalization to future stimuli that are slightly different. How do we know what dimensions are relevant to a given task, and should be attended to and learned about? Considerable behavioral work in cognitive psychology has explored the dynamics of "attention learning"-how we learn what to attend to-within the context of categorization and concept formation. However, little is known about the neural basis of attention learning, and how attention interacts with implicit trial-and-error reinforcement learning processes. The goal of this project is to study the neural and computational substrates of attention learning in humans, and to understand how attention mechanisms interact with learning mechanisms in the brain. We propose to use a combi- nation of computational modeling, behavioral experiments and functional neuroimaging in order to 1) determine the neural substrates of attention learning in the human brain, 2) track learning-driven changes in attention to different dimensions of a stimulus directly, and 3) establish individual differences in attention for learning separately from attention for decision. The overarching neural hypothesis to be tested is two-fold: we hypothesize that neural mechanisms for reinforcement learning in the basal ganglia operate on an attentionally-filtered representation of the environment that is conveyed to the striatum by fronto-parietal cortical afferents. Moreover, we hypothesize that this attentional filter is dynamically adjusted according to the outcomes of ongoing decisions. Throughout, we will not assume that attention learning consists of one unitary process but rather investigate the possibility that individuals use different strategies to
varying extents. In particular, building on our previous research and on findings in the categorization literature, we will focus on two computational strategies for attention learning-a serial hypothesis testing strategy, and a gradually focusing parallel attention strategy-that are differentially indicated in different individuals. Our results will significantly advance the basic
scientific understanding of cognitive decision making processes, elucidating the neural mechanisms underlying a critical component of decision making. From a practical perspective, understanding the computational and neural underpinnings of individual differences in attention learning will potentially allow tailoring of learning tasks to different individuals. Moreover, the
neural processes underlying attention learning are likely to be involved in clinical disorders such
as schizophrenia, attention deficit disorder and drug abuse disorder. In the long term, the proposed research will potentially impact on the study and treatment of these disorders.
描述(申请人提供):基于经验的决策中选择性注意的神经和计算机制为了做出正确的决策,我们必须从过去的经验中吸取教训。长期以来,学习一直被概念化为在刺激和结果之间形成联系。但是,在复杂和多维的现实世界决策环境中,我们应该如何定义这些“刺激”呢?了解所有可用的刺激特征(身高、颜色、形状等)似乎是最理想的。然而,在自然环境中,只有几个维度与任何给定任务的绩效相关。只关注和学习那些与手头任务相关的维度(忽略所有其他维度)可以提高成绩,加快学习速度,并简化对未来略有不同的刺激的概括。我们如何知道哪些维度与给定的任务相关,以及应该关注和了解这些维度?认知心理学中的相当多的行为研究已经探索了“注意学习”的动态--我们如何学习注意什么--在分类和概念形成的背景下。然而,关于注意学习的神经基础,以及注意如何与内隐反复试验强化学习过程相互作用,人们知之甚少。这个项目的目标是研究人类注意力学习的神经和计算基础,并了解注意力机制如何与大脑中的学习机制相互作用。我们建议使用计算模型、行为实验和功能神经成像的组合来1)确定人脑中注意学习的神经基础,2)直接跟踪学习驱动的注意对不同刺激维度的变化,以及3)建立个体对学习的注意的差异,而不是为了决策而注意。要检验的主要神经假说有两个:我们假设,基底神经节强化学习的神经机制作用于注意过滤的环境表征,并通过额顶皮质传入传递到纹状体。此外,我们假设这种注意过滤器是根据正在进行的决定的结果动态调整的。自始至终,我们不会假设注意力学习由一个单一的过程组成,而是调查个体使用不同策略的可能性
程度各不相同。特别是,基于我们之前的研究和分类文献中的发现,我们将重点关注两种注意力学习的计算策略--一种连续假设检验策略和一种逐渐聚焦的并行注意策略--这两种策略在不同的个体中表现不同。我们的结果将显著推进基本的
对认知决策过程的科学理解,阐明决策的关键组成部分背后的神经机制。从实践的角度来看,理解注意学习中个体差异的计算和神经基础将潜在地允许为不同的个体定制学习任务。此外,
注意学习的神经过程很可能与临床疾病有关,如
如精神分裂症、注意力缺陷障碍和药物滥用障碍。从长远来看,这项拟议的研究可能会对这些疾病的研究和治疗产生影响。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A universal role of the ventral striatum in reward-based learning: evidence from human studies.
- DOI:10.1016/j.nlm.2014.05.002
- 发表时间:2014-10
- 期刊:
- 影响因子:2.7
- 作者:Daniel, Reka;Pollmann, Stefan
- 通讯作者:Pollmann, Stefan
A free-choice premium in the basal ganglia.
基底神经节的自由选择溢价。
- DOI:10.1016/j.tics.2014.09.005
- 发表时间:2015
- 期刊:
- 影响因子:19.9
- 作者:Niv,Yael;Langdon,Angela;Radulescu,Angela
- 通讯作者:Radulescu,Angela
Reward prediction errors create event boundaries in memory.
奖励预测错误会在内存中创建事件边界。
- DOI:10.1016/j.cognition.2020.104269
- 发表时间:2020
- 期刊:
- 影响因子:3.4
- 作者:Rouhani,Nina;Norman,KennethA;Niv,Yael;Bornstein,AaronM
- 通讯作者:Bornstein,AaronM
Signed and unsigned reward prediction errors dynamically enhance learning and memory.
- DOI:10.7554/elife.61077
- 发表时间:2021-03-04
- 期刊:
- 影响因子:7.7
- 作者:Rouhani N;Niv Y
- 通讯作者:Niv Y
Statistical computations underlying the dynamics of memory updating.
- DOI:10.1371/journal.pcbi.1003939
- 发表时间:2014-11
- 期刊:
- 影响因子:4.3
- 作者:Gershman SJ;Radulescu A;Norman KA;Niv Y
- 通讯作者:Niv Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yael Niv其他文献
Yael Niv的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yael Niv', 18)}}的其他基金
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10461033 - 财政年份:2020
- 资助金额:
$ 36.44万 - 项目类别:
Decoding the dynamic representation of reward predictions across mesocorticostriatal circuits during learning
解码学习过程中中皮质纹状体回路奖励预测的动态表示
- 批准号:
10395963 - 财政年份:2020
- 资助金额:
$ 36.44万 - 项目类别:
Decoding the dynamic representation of reward predictions across mesocorticostriatal circuits during learning
解码学习过程中中皮质纹状体回路奖励预测的动态表示
- 批准号:
10153745 - 财政年份:2020
- 资助金额:
$ 36.44万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10239260 - 财政年份:2020
- 资助金额:
$ 36.44万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10663070 - 财政年份:2020
- 资助金额:
$ 36.44万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10656297 - 财政年份:2019
- 资助金额:
$ 36.44万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10449368 - 财政年份:2019
- 资助金额:
$ 36.44万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10219795 - 财政年份:2019
- 资助金额:
$ 36.44万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10002301 - 财政年份:2019
- 资助金额:
$ 36.44万 - 项目类别:
Orbitofrontal cortex as a cognitive map of task states
眶额皮层作为任务状态的认知图
- 批准号:
9353368 - 财政年份:2016
- 资助金额:
$ 36.44万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
The attention area estimation and safety evaluation of BCI using SSVEP
基于SSVEP的BCI注意力区域估计和安全性评估
- 批准号:
26870684 - 财政年份:2014
- 资助金额:
$ 36.44万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8189126 - 财政年份:2009
- 资助金额:
$ 36.44万 - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8217067 - 财政年份:2009
- 资助金额:
$ 36.44万 - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8423034 - 财政年份:2009
- 资助金额:
$ 36.44万 - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
7588129 - 财政年份:2009
- 资助金额:
$ 36.44万 - 项目类别:
Study on Land Use Control of Urbanization Control Area which paid attention to District where eased Development Permission System
关注放宽开发许可制度区的城镇化控制区土地利用控制研究
- 批准号:
19760423 - 财政年份:2007
- 资助金额:
$ 36.44万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Synthetic research about restructuring of the dialect, area word education that it paid attention to the communication consciousness, function
注重交际意识、功能的方言、方言教育重构综合研究
- 批准号:
15330183 - 财政年份:2003
- 资助金额:
$ 36.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Changing sea levels and (semi-)terrestrial landscape development in the Baltic Sea coastal area, with special attention to the role of the Darss Sill
波罗的海沿岸地区的海平面变化和(半)陆地景观发展,特别关注达斯海床的作用
- 批准号:
5385409 - 财政年份:2002
- 资助金额:
$ 36.44万 - 项目类别:
Research Units