Computational Tools for the Analysis of MRI Images in Type-1 Diabetes

用于分析 1 型糖尿病 MRI 图像的计算工具

基本信息

  • 批准号:
    8966899
  • 负责人:
  • 金额:
    $ 16.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): This project aims to characterize the local changes in pancreatic islet inflammation (referred to as insulitis) and volume loss associated with type-1 diabetes (T1D) by developing novel computational image analysis algorithms that quantify such changes from magnetic resonance imaging (MRI) data. In the United States alone, as many as three million people may have T1D, with 80 new cases diagnosed every day, costing almost $15B annually (source: JDRF). Understanding the mechanisms of autoimmune destruction of ß cells at the organ level is important for developing new early diagnostic criteria and effective treatment strategies and preventative therapies. Clinical occultness of much of the autoimmune process, along with the difficult access to the location of the endocrine islets of Langerhans have slowed progress in understanding the etiology and progression of T1D. However, MRI alleviates this by permitting noninvasive, local measurement of pancreatic anatomy (such as the volume), in addition to insulitis via the use of magnetic nanoparticle (MNP) agents, making cross-sectional and longitudinal T1D imaging studies feasible. To that end, accurate correspondence among pancreatic regions of two or more images are required in order to compute 1) insulitis from pre/post- infusion MNP-MR images, 2) the progress of insulitis over time, and 3) the local change in pancreatic volume over time, in addition to 4) comparing all of these quantities across subjects. Such a point-wise correspondence is provided by image registration (alignment). This proposal aims to build on my background in brain image analysis and develop novel image registration (alignment) tools to accurately compute point- wise correspondence between pancreas images acquired from different subjects at different times, and subsequently use them in cross-sectional and longitudinal pancreatic imaging to develop new biomarkers, by locally tracking long-term inflammatory and volume changes in individuals with clinical and/or occult T1D. Specifically, we propose to develop an inherently-symmetric quasi-volume-preserving (QVP) non-rigid image registration algorithm for the pancreas, which, in contrast to the existing algorithms in the literature, avoids regional biases and the concomitant errors by defining a uniform objective function. Furthermore, the intergroup differences and intragroup variability are measured by constructing unbiased statistical pancreatic atlases of healthy and T1D cohorts, using a novel, improved group-wise registration algorithm. My long-term career goal is to establish and direct an inter-disciplinary research program at a top-notch academic institution, which will focus on developing creative approaches and innovative computational tools for processing biomedical images, in order to facilitate the investigation of the relationship between medical images and clinical data, and improve patient diagnosis and outcomes. My main objective for the K01 award period is to become an expert in T1D, in addition to abdominal - and especially pancreatic - MR acquisition and image analysis, and to advance this field by translating the skills I had previously acquired in brain image reconstruction and analysis. To achieve this goal, there are three important areas where I require additional training, mentoring, and experience: 1) diabetes, 2) abdominal imaging with contrast agents, and 3) advanced study design and biostatistics. I propose to acquire this training through direct mentoring, didactic coursework, modular courses, seminar series, and scientific meetings. The proposed project will form the foundation of my independent computational abdominal imaging research program, which will have diabetes at the core of its clinical focus.
 描述(由申请人提供):本项目旨在通过开发新的计算图像分析算法来表征与1型糖尿病(T1 D)相关的胰岛炎症(称为胰岛炎)和体积损失的局部变化,该算法可根据磁共振成像(MRI)数据量化此类变化。仅在美国,就有多达300万人可能患有T1 D,每天诊断出80例新病例,每年花费近150亿美元(来源:JDRF)。在器官水平上了解自身免疫性破坏胰岛细胞的机制对于开发新的早期诊断标准和有效的治疗策略和预防性疗法非常重要。自身免疫过程的临床隐匿性,沿着难以进入内分泌胰岛的位置,减缓了对T1 D病因和进展的理解。然而,MRI通过允许非侵入性的,局部测量胰腺解剖结构(如体积),除了通过使用磁性纳米颗粒(MNP)剂的胰岛炎,使横截面和纵向T1 D成像研究可行。为此,需要两个或更多个图像的胰腺区域之间的准确对应,以便计算1)来自输注前/后MNP-MR图像的胰岛炎,2)胰岛炎随时间的进展,和3)胰腺体积随时间的局部变化,以及4)跨受试者比较所有这些量。这种逐点对应由图像配准(对准)提供。这个建议的目的是建立在我的背景在脑图像分析和开发新的图像配准(对准)工具来准确地计算在不同时间从不同受试者获取的胰腺图像之间的逐点对应,并且随后将它们用于横截面和纵向胰腺成像以开发新的生物标志物,通过局部跟踪临床和/或隐匿性T1 D患者的长期炎症和体积变化。具体而言,我们建议开发一种固有对称的准体积保持(QVP)的非刚性图像配准算法的胰腺,其中,在文献中现有的算法相比,避免区域偏见和伴随的错误,通过定义一个统一的目标函数。此外,组间差异和组内变异性通过构建健康和T1 D队列的无偏统计胰腺图谱来测量,使用一种新的,改进的组配准算法。我的长期职业目标是在一流的学术机构建立和指导一个跨学科的研究项目,该项目将专注于开发用于处理生物医学图像的创造性方法和创新的计算工具,以促进医学图像和临床数据之间关系的调查,并改善患者诊断和结果。我在K 01奖期间的主要目标是成为T1 D专家,除了腹部-尤其是胰腺- MR采集和图像分析,并通过翻译我以前在脑图像重建和分析方面获得的技能来推进这一领域。为了实现这一目标,我需要在三个重要领域进行额外的培训、指导和经验:1)糖尿病,2)使用造影剂进行腹部成像,3)先进的研究设计和生物统计学。我建议通过直接指导,教学课程,模块课程,系列研讨会和科学会议来获得这种培训。拟议的项目将形成我的独立计算腹部成像研究计划的基础,该计划将糖尿病作为其临床重点的核心。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iman Aganj其他文献

Iman Aganj的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iman Aganj', 18)}}的其他基金

Connectomic Biomarkers of Preclinical Alzheimer's Disease within Multi-Synaptic Pathways
多突触通路内临床前阿尔茨海默病的连接组生物标志物
  • 批准号:
    10213243
  • 财政年份:
    2021
  • 资助金额:
    $ 16.07万
  • 项目类别:
Computational Tools for the Analysis of MRI Images in Type-1 Diabetes
用于分析 1 型糖尿病 MRI 图像的计算工具
  • 批准号:
    9473771
  • 财政年份:
    2015
  • 资助金额:
    $ 16.07万
  • 项目类别:
Computational Tools for the Analysis of MRI Images in Type-1 Diabetes
用于分析 1 型糖尿病 MRI 图像的计算工具
  • 批准号:
    9260874
  • 财政年份:
    2015
  • 资助金额:
    $ 16.07万
  • 项目类别:

相似海外基金

REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
  • 批准号:
    2349179
  • 财政年份:
    2024
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
  • 批准号:
    2349567
  • 财政年份:
    2024
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
  • 批准号:
    23K10982
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
  • 批准号:
    RGPIN-2016-03885
  • 财政年份:
    2022
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    DGECR-2022-00401
  • 财政年份:
    2022
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Discovery Launch Supplement
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    RGPIN-2022-04570
  • 财政年份:
    2022
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithm Design
算法设计
  • 批准号:
    CRC-2015-00122
  • 财政年份:
    2022
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Canada Research Chairs
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
  • 批准号:
    22K17855
  • 财政年份:
    2022
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
  • 批准号:
    2210849
  • 财政年份:
    2022
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
  • 批准号:
    569312-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了