Computational Tools for the Analysis of MRI Images in Type-1 Diabetes
用于分析 1 型糖尿病 MRI 图像的计算工具
基本信息
- 批准号:9473771
- 负责人:
- 金额:$ 15.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAlgorithm DesignAlgorithmic AnalysisAlgorithmsAnatomyAnimalsAreaAtlasesAutoimmune ProcessBeta CellBiological MarkersBiometryBrain imagingBreathingCharacteristicsClinicalClinical DataClinical ResearchClinical TrialsContrast MediaDataData SetDatabasesDevelopmentDiabetes MellitusDiagnosisDiagnosticDiseaseDisease ProgressionEffectiveness of InterventionsEndocrineEtiologyEvaluationExhibitsExocrine pancreasFeasibility StudiesFoundationsGoalsGoldHeterogeneityHumanHuman DevelopmentImageImage AnalysisIndividualInflammationInflammatoryInfusion proceduresInstitutionInsulin-Dependent Diabetes MellitusInterdisciplinary StudyInterventionInvestigationIslets of LangerhansLiteratureLocationLongitudinal StudiesMagnetic Resonance ImagingMagnetic nanoparticlesMapsMeasurementMeasuresMedical ImagingMentored Research Scientist Development AwardMentorsMethodsModelingMorphologyMotionNatureOnset of illnessOrganOutcomePancreasPatientsPatternPhenotypePhysiologicalPopulationPositioning AttributePreventive therapyProcessResearchResearch DesignResearch PersonnelResearch TrainingScanningSeriesShapesSourceTechniquesTechnologyTestingTimeTrainingTranslatingUnited Statesbasebioimagingcareercohortcomputerized toolscostdesigndiabetes controleffective therapyexperienceexperimental studyflexibilityimage processingimage reconstructionimage registrationimaging studyimprovedinnovationisletmacrophagemeetingsmonocytenon-invasive imagingnotch proteinnovelpancreas imagingpreservationprogramsprospectivepublic health relevancerecruitskillstooltreatment strategy
项目摘要
DESCRIPTION (provided by applicant): This project aims to characterize the local changes in pancreatic islet inflammation (referred to as insulitis) and volume loss associated with type-1 diabetes (T1D) by developing novel computational image analysis algorithms that quantify such changes from magnetic resonance imaging (MRI) data. In the United States alone, as many as three million people may have T1D, with 80 new cases diagnosed every day, costing almost $15B annually (source: JDRF). Understanding the mechanisms of autoimmune destruction of ß cells at the organ level is important for developing new early diagnostic criteria and effective treatment strategies and preventative therapies. Clinical occultness of much of the autoimmune process, along with the difficult access to the location of the endocrine islets of Langerhans have slowed progress in understanding the etiology and progression of T1D. However, MRI alleviates this by permitting noninvasive, local measurement of pancreatic anatomy (such as the volume), in addition to insulitis via the use of magnetic nanoparticle (MNP) agents, making cross-sectional and longitudinal T1D imaging studies feasible. To that end, accurate correspondence among pancreatic regions of two or more images are required in order to compute 1) insulitis from pre/post- infusion MNP-MR images, 2) the progress of insulitis over time, and 3) the local change in pancreatic volume over time, in addition to 4) comparing all of these quantities across subjects. Such a point-wise correspondence is provided by image registration (alignment). This proposal aims to build on my background in brain image analysis and develop novel image registration (alignment) tools to accurately compute point- wise correspondence between pancreas images acquired from different subjects at different times, and subsequently use them in cross-sectional and longitudinal pancreatic imaging to develop new biomarkers, by locally tracking long-term inflammatory and volume changes in individuals with clinical and/or occult T1D. Specifically, we propose to develop an inherently-symmetric quasi-volume-preserving (QVP) non-rigid image registration algorithm for the pancreas, which, in contrast to the existing algorithms in the literature, avoids regional biases and the concomitant errors by defining a uniform objective function. Furthermore, the intergroup differences and intragroup variability are measured by constructing unbiased statistical pancreatic atlases of healthy and T1D cohorts, using a novel, improved group-wise registration algorithm. My long-term career goal is to establish and direct an inter-disciplinary research program at a top-notch academic institution, which will focus on developing creative approaches and innovative computational tools for processing biomedical images, in order to facilitate the investigation of the relationship between medical images and clinical data, and improve patient diagnosis and outcomes. My main objective for the K01 award period is to become an expert in T1D, in addition to abdominal - and especially pancreatic - MR acquisition and image analysis, and to advance this field by translating the skills I had previously acquired in brain image reconstruction and analysis. To achieve this goal, there are three important areas where I require additional training, mentoring, and experience: 1) diabetes, 2) abdominal imaging with contrast agents, and 3) advanced study design and biostatistics. I propose to acquire this training through direct mentoring, didactic coursework, modular courses, seminar series, and scientific meetings. The proposed project will form the foundation of my independent computational abdominal imaging research program, which will have diabetes at the core of its clinical focus.
描述(由申请人提供):该项目旨在通过开发新的计算图像分析算法来量化与 1 型糖尿病 (T1D) 相关的胰岛炎症(称为胰岛炎)和体积损失的局部变化,这些算法可根据磁共振成像 (MRI) 数据量化此类变化。仅在美国,就有多达 300 万人可能患有 T1D,每天诊断出 80 个新病例,每年花费近 15B 美元(来源:JDRF)。了解器官水平上β细胞自身免疫破坏的机制对于制定新的早期诊断标准以及有效的治疗策略和预防性疗法非常重要。大部分自身免疫过程的临床隐匿性,以及难以了解朗格汉斯内分泌岛的位置,减缓了对 T1D 病因和进展的理解进展。然而,除了通过使用磁性纳米颗粒 (MNP) 试剂测量胰岛炎之外,MRI 还允许对胰腺解剖结构(例如体积)进行无创局部测量,从而缓解了这一问题,从而使横断面和纵向 T1D 成像研究变得可行。为此,需要两个或多个图像的胰腺区域之间的准确对应,以便计算 1) 来自输注前/后 MNP-MR 图像的胰岛素炎,2) 胰岛素炎随时间的进展,以及 3) 胰腺体积随时间的局部变化,此外 4) 比较受试者之间的所有这些量。这种逐点对应是通过图像配准(对准)来提供的。本提案旨在以我在脑图像分析方面的背景为基础,开发新颖的图像配准(对齐)工具,以准确计算从不同受试者在不同时间获取的胰腺图像之间的逐点对应关系,然后通过局部跟踪临床和/或隐匿性 T1D 个体的长期炎症和体积变化,将其用于横断面和纵向胰腺成像,以开发新的生物标志物。具体来说,我们建议开发一种用于胰腺的固有对称准体积保留(QVP)非刚性图像配准算法,与文献中的现有算法相比,该算法通过定义统一的目标函数来避免区域偏差和伴随误差。此外,通过使用一种新颖的、改进的分组配准算法构建健康和 T1D 队列的无偏统计胰腺图谱来测量组间差异和组内变异性。我的长期职业目标是在一流的学术机构建立并指导一个跨学科研究项目,重点开发用于处理生物医学图像的创造性方法和创新计算工具,以促进医学图像与临床数据之间关系的研究,并改善患者的诊断和结果。我在 K01 获奖期间的主要目标是成为 T1D 领域的专家,除了腹部(尤其是胰腺)MR 采集和图像分析之外,并通过转化我之前在脑图像重建和分析方面获得的技能来推进这一领域。为了实现这一目标,我需要在三个重要领域进行额外的培训、指导和经验:1) 糖尿病,2) 使用造影剂进行腹部成像,3) 高级研究设计和生物统计学。我建议通过直接指导、教学课程、模块化课程、研讨会系列和科学会议来获得这种培训。拟议的项目将构成我的独立计算腹部成像研究项目的基础,该项目将以糖尿病为临床重点的核心。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iman Aganj其他文献
Iman Aganj的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iman Aganj', 18)}}的其他基金
Connectomic Biomarkers of Preclinical Alzheimer's Disease within Multi-Synaptic Pathways
多突触通路内临床前阿尔茨海默病的连接组生物标志物
- 批准号:
10213243 - 财政年份:2021
- 资助金额:
$ 15.92万 - 项目类别:
Computational Tools for the Analysis of MRI Images in Type-1 Diabetes
用于分析 1 型糖尿病 MRI 图像的计算工具
- 批准号:
8966899 - 财政年份:2015
- 资助金额:
$ 15.92万 - 项目类别:
Computational Tools for the Analysis of MRI Images in Type-1 Diabetes
用于分析 1 型糖尿病 MRI 图像的计算工具
- 批准号:
9260874 - 财政年份:2015
- 资助金额:
$ 15.92万 - 项目类别:
相似海外基金
REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
- 批准号:
2349179 - 财政年份:2024
- 资助金额:
$ 15.92万 - 项目类别:
Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 15.92万 - 项目类别:
Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 15.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
- 批准号:
RGPIN-2016-03885 - 财政年份:2022
- 资助金额:
$ 15.92万 - 项目类别:
Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
DGECR-2022-00401 - 财政年份:2022
- 资助金额:
$ 15.92万 - 项目类别:
Discovery Launch Supplement
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
RGPIN-2022-04570 - 财政年份:2022
- 资助金额:
$ 15.92万 - 项目类别:
Discovery Grants Program - Individual
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
- 批准号:
22K17855 - 财政年份:2022
- 资助金额:
$ 15.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
- 批准号:
2210849 - 财政年份:2022
- 资助金额:
$ 15.92万 - 项目类别:
Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 15.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral