Blood Flow Velocimetry Using Digital Subtraction Angiography
使用数字减影血管造影进行血流速度测量
基本信息
- 批准号:9137447
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAneurysmAreaArteriographiesArteriovenous malformationBackBehaviorBiologicalBloodBlood Flow VelocityBlood PressureBlood VesselsBlood flowCardiacCardiovascular DiseasesCerebrovascular DisordersCerebrovascular systemCharacteristicsClinicalCodeComplexData Storage and RetrievalDeveloped CountriesDevelopmentDiagnosisDiagnosticDiagnostic radiologic examinationDigital Subtraction AngiographyDiseaseDoseEconomicsEnsureEvolutionFailureGeometryGoalsHealthHealthcareHumanHuman ResourcesImageImaging TechniquesInvestmentsKnowledgeLeadLightLiquid substanceMagnetic Resonance ImagingMapsMeasurementMeasuresMechanical StressMedicalMedical ImagingMethodsMissionMonitorMorbidity - disease rateMorphologyNatureNoiseOperative Surgical ProceduresOpticsPathologyPatientsPenetrationPerioperativePersonal SatisfactionPhasePhotonsPhysicsPhysiologic pulsePlayPreventionProceduresReadingResearchResearch PersonnelResolutionRiskRoentgen RaysRoleScientistSignal TransductionSonSourceStenosisStressSystemTechniquesTechnologyTestingTherapeuticThickTimeUltrasonographyUniversitiesValidationVascular DiseasesVascular SystemVelocimetriesWorkYangabsorptionartery occlusionbrain arteriovenous malformationscerebrovascularclinical Diagnosisclinical applicationcomputer codecostcost effectivedesigndetectorexperiencehemodynamicsimage processingimaging detectorimaging systemimprovedin vivoinnovationinterestknowledge basemeetingsmortalitynew technologynoveloperationparticlepreventprogramspublic health relevanceshear stresssimulationtemporal measurementtooltreatment planning
项目摘要
DESCRIPTION (provided by applicant): Diseases in the vascular system are still the leading cause of mortality and morbidity in developed countries despite considerable therapeutic progress in recent years. Blood flow velocity provides critical information needed for the diagnosis of vascular diseases, planning of interventional surgery treatment, and monitoring of endovascular treatment of brain arteriovenous malformations. The lack of such flow characteristics prevents understanding the underlying hemodynamics and its correlation with multiple cerebrovascular diseases. Therefore, there is a critical need to obtain precise blood flow velocities in the vascular system, which can be used to estimate the blood pressure, wall shear stress on the arterial wall and other hemodynamic indicators, and aid in diagnosing and treating a host of vascular diseases. Current diagnostic tools suffer from poor accuracy or low spatial and temporal resolutions. To overcome this limitation, we propose to develop an ultrafast, high-resolution X-ray blood flow velocimetry system that will provide quantitative blood
velocity maps in the endovascular system. Furthermore, researchers using numerical simulations to understand the hemodynamics desperately seek detailed blood velocity and stress measurements for comparison and validation of their computer codes. The proposed project aims at providing a novel blood flow velocimetry tool using an ultrafast X-ray probing and inexpensive digital subtraction angiography (DSA) that can recover precise velocity distribution inside of the vascular systems especially for complex geometries. The long-term goal of the proposed research is to provide critical blood flow characteristics in vascular systems allowing scientists to predict the formation, evolution and failure risk of vascular pathology such as arteriovenous malformations, arterial occlusions, stenosis, and aneurysms. The proposed technology has a great potential in generating a real-time perioperative assessment of the blood velocity during a DSA routine. The novel technology will enable medical scientists to gain more fundamental knowledge about the nature and behavior of hemodynamics in cerebrovascular systems. The project is highly relevant to NIH's mission because the precise real-time assessment of blood velocities will lead to more educated therapeutic decisions which could save more lives, improve health, and reduce operation cost. The expanded knowledge base will enhance the Nation's economic well-being and ensure a continued high return on the public investment in research.
描述(由申请人提供):尽管近年来在治疗方面取得了相当大的进展,但血管系统疾病仍然是发达国家死亡率和发病率的主要原因。血流速度为血管疾病的诊断、介入手术治疗的计划以及脑动静脉畸形血管内治疗的监测提供了所需的关键信息。缺乏这样的流动特性,阻碍了了解潜在的血流动力学及其与多种脑血管疾病的相关性。因此,迫切需要获得血管系统中精确的血流速度,其可用于估计血压、动脉壁上的壁剪切应力和其他血液动力学指标,并有助于诊断和治疗许多血管疾病。 目前的诊断工具存在准确性差或空间和时间分辨率低的问题。为了克服这一限制,我们建议开发一种超快,高分辨率的X射线血流速度测量系统,将提供定量血液
血管内系统中的速度图。此外,研究人员使用数值模拟来了解血液动力学,拼命寻求详细的血液速度和应力测量,以比较和验证他们的计算机代码。该项目旨在提供一种新型的血流速度测量工具,使用超快X射线探测和廉价的数字减影血管造影术(DSA),可以恢复血管系统内部的精确速度分布,特别是对于复杂的几何形状。拟议研究的长期目标是提供血管系统中的关键血流特征,使科学家能够预测血管病变的形成,演变和失败风险,如动静脉畸形,动脉闭塞,狭窄和动脉瘤。 所提出的技术具有很大的潜力,在DSA常规过程中产生的血液流速的实时围手术期评估。这项新技术将使医学科学家能够获得有关脑血管系统血液动力学性质和行为的更多基础知识。该项目与NIH的使命高度相关,因为对血液速度的精确实时评估将导致更明智的治疗决策,从而挽救更多的生命,改善健康状况,并降低手术成本。扩大的知识基础将提高国家的经济福祉,并确保公共研究投资的持续高回报。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Velocimetry based on dye visualization for a pulsatile tubing flow measurement.
基于染料可视化的测速法,用于脉动管流量测量。
- DOI:10.1364/ao.58.0000c7
- 发表时间:2019
- 期刊:
- 影响因子:1.9
- 作者:Yang,Zifeng;Johnson,Mark
- 通讯作者:Johnson,Mark
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BIPIN SINGH其他文献
BIPIN SINGH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BIPIN SINGH', 18)}}的其他基金
Blood Flow Velocimetry Using Digital Subtraction Angiography
使用数字减影血管造影进行血流速度测量
- 批准号:
9763361 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Photonic Bandgap Structures for Improved Timing and Spatial Resolution in PET Det
用于提高 PET 检测中的定时和空间分辨率的光子带隙结构
- 批准号:
8001023 - 财政年份:2010
- 资助金额:
$ 22.5万 - 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
- 批准号:
7109099 - 财政年份:2006
- 资助金额:
$ 22.5万 - 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
- 批准号:
7224868 - 财政年份:2006
- 资助金额:
$ 22.5万 - 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
- 批准号:
8209071 - 财政年份:2005
- 资助金额:
$ 22.5万 - 项目类别:
Digital 2-D Neutron Detector for Protein Function Studies
用于蛋白质功能研究的数字二维中子探测器
- 批准号:
7340184 - 财政年份:2005
- 资助金额:
$ 22.5万 - 项目类别:
Digital 2-D Neutron Detector for Protein Function Studies
用于蛋白质功能研究的数字二维中子探测器
- 批准号:
7219722 - 财政年份:2005
- 资助金额:
$ 22.5万 - 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
- 批准号:
7670766 - 财政年份:2005
- 资助金额:
$ 22.5万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant