Multibeam Healing for Laser Micromachining in Manufacturing

制造业激光微加工的多光束修复

基本信息

  • 批准号:
    7670766
  • 负责人:
  • 金额:
    $ 77.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): There is considerable interest in new and innovative manufacturing methods for medical imaging technologies to enhance performance while reducing cost. The precision and low-force signature of lasers makes them very attractive alternatives to traditional machining methods for brittle materials, particularly scintillators such as lutetium oxyorthosilicate (LSO), gadolinium oxyorthosilciate (GSO), lutetium-yttrium oxyorthosilicate (LYSO), etc. used in high-resolution diagnostic imaging and nuclear medicine. However, material damage, especially micro-scale cracking, during laser machining is a frequently encountered problem that results in added costs, needless scrap, and reduced performance/reliability. These issues have prevented the tremendous commercial potential of laser machining from being fully utilized to manufacture large and finely pixelated scintillator arrays. The goal of the Phase I research was to demonstrate the feasibility of defect free laser machining of brittle scintillators using a novel multibeam approach. We are pleased to report that the Phase I research has not only clearly demonstrated the feasibility of our approach but has also led to a major discovery that has the potential to dramatically reduce the cost and duration of pixelation. Thus our Phase I effort has laid a firm foundation for achieving our ultimate goal of defect-free manufacturing of scintillator arrays using laser machining. With these exceptional results, the technique of laser pixelation and multibeam healing is now poised for exploitation in rapid and cost effective systems for micro-machining arrays of various sizes, shapes, and orientations in scintillators of critical importance to medical and non-medical applications. The proposed research is designed to address manufacturing issues through detailed simulation studies of the material's behavior during laser ablation, and by implementing a new laser beam delivery system based on experimental findings that confirm the simulation results. Developing such a system and a body of knowledge in scintillator micro-machining will allow fabricating large arrays of various scintillators at significantly reduced manufacturing cost, while greatly improving detector performance with reduced pixel sizes and inter-pixel gaps. Therefore, the proposed research has great commercial relevance, especially for modalities as PET where higher resolution and lower cost is critically important.
描述(由申请人提供):对医学成像技术的新的和创新的制造方法引起了极大的兴趣,以提高性能,同时降低成本。激光器的精确和低强度特征使它们非常有吸引力的材料传统加工方法,尤其是闪烁的闪烁剂,例如氧基氧硅酸盐(LSO),高氧硅氧硅氧甲硅氧硅(GSO)(GSO),露铁 - 含氧核酸盐(lutetium-Yttrium-Yttrium-Yttrium oxyartium oxyartium),氧基硅烷酸酯(Lyso)等。但是,在激光加工期间,材料损坏,尤其是微型开裂,是一个经常遇到的问题,会导致成本增加,不必要的废料和降低性能/可靠性。这些问题阻止了激光加工的巨大商业潜力,无法完全利用用于制造大型且精细的闪烁体阵列。第一阶段研究的目的是证明使用新型的多束方法对脆性闪烁体进行无缺陷激光加工的可行性。我们很高兴地报告,I阶段研究不仅清楚地证明了我们方法的可行性,而且还导致了一个重大发现,该发现有可能大大降低像素化的成本和持续时间。因此,我们的第一阶段努力为实现了使用激光加工的闪烁阵列制造的最终目标奠定了坚定的基础。通过这些出色的结果,现在有助于在快速且具有成本效益的系统中剥削激光像素化和多束愈合的技术,用于在对医疗和非医学应用至关重要的闪烁体中的各种尺寸,形状和方向的微观阵列。拟议的研究旨在通过对激光消融过程中材料行为的详细模拟研究来解决制造问题,并通过基于确认模拟结果的实验​​发现实施新的激光束输送系统。开发这种系统和闪烁体微型处理中的知识体系,将允许以大大降低的制造成本制造大量的各种闪光灯,同时,通过降低像素尺寸和像素间差异,可以大大提高探测器性能。因此,拟议的研究具有很大的商业意义,尤其是对于较高的分辨率和较低成本至关重要的宠物而言,至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BIPIN SINGH其他文献

BIPIN SINGH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BIPIN SINGH', 18)}}的其他基金

Blood Flow Velocimetry Using Digital Subtraction Angiography
使用数字减影血管造影进行血流速度测量
  • 批准号:
    9137447
  • 财政年份:
    2016
  • 资助金额:
    $ 77.01万
  • 项目类别:
Blood Flow Velocimetry Using Digital Subtraction Angiography
使用数字减影血管造影进行血流速度测量
  • 批准号:
    9763361
  • 财政年份:
    2016
  • 资助金额:
    $ 77.01万
  • 项目类别:
Photonic Bandgap Structures for Improved Timing and Spatial Resolution in PET Det
用于提高 PET 检测中的定时和空间分辨率的光子带隙结构
  • 批准号:
    8001023
  • 财政年份:
    2010
  • 资助金额:
    $ 77.01万
  • 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
  • 批准号:
    7109099
  • 财政年份:
    2006
  • 资助金额:
    $ 77.01万
  • 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
  • 批准号:
    7224868
  • 财政年份:
    2006
  • 资助金额:
    $ 77.01万
  • 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
  • 批准号:
    8209071
  • 财政年份:
    2005
  • 资助金额:
    $ 77.01万
  • 项目类别:
Digital 2-D Neutron Detector for Protein Function Studies
用于蛋白质功能研究的数字二维中子探测器
  • 批准号:
    7340184
  • 财政年份:
    2005
  • 资助金额:
    $ 77.01万
  • 项目类别:
Digital 2-D Neutron Detector for Protein Function Studies
用于蛋白质功能研究的数字二维中子探测器
  • 批准号:
    7219722
  • 财政年份:
    2005
  • 资助金额:
    $ 77.01万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
  • 批准号:
    10643041
  • 财政年份:
    2023
  • 资助金额:
    $ 77.01万
  • 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
  • 批准号:
    10699190
  • 财政年份:
    2023
  • 资助金额:
    $ 77.01万
  • 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
  • 批准号:
    10701231
  • 财政年份:
    2023
  • 资助金额:
    $ 77.01万
  • 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
  • 批准号:
    10717610
  • 财政年份:
    2023
  • 资助金额:
    $ 77.01万
  • 项目类别:
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
  • 批准号:
    10585764
  • 财政年份:
    2023
  • 资助金额:
    $ 77.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了