Big Data Coursework for Computational Medicine
计算医学大数据课程
基本信息
- 批准号:9242970
- 负责人:
- 金额:$ 6.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-29 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAddressAdvisory CommitteesAreaBehavioralBig DataBioethicsBiological SciencesBiomedical ResearchCase StudyClinicClinicalCollectionCommittee MembersComplexComputational BiologyDataData ReportingData ScienceData SetDevelopmentDevelopment PlansDisciplineDoctor of MedicineDoctor of PhilosophyEducationEffectivenessEngineeringEthicsEvaluationFacultyFeedbackFutureGoalsGrantHealthHealth Care CostsHealth Services ResearchHealthcareImageImageryIndustryInformaticsInstructionInterdisciplinary EducationInterviewKnowledgeLawsLearningMathematicsMeasuresMedicineMentorshipMethodsMinnesotaMolecularMonitorNatural Language ProcessingPatient-Focused OutcomesPeer ReviewPerformancePositioning AttributePostdoctoral FellowPrivacyProcessProgram ReviewsPublic HealthPublicationsRecruitment ActivityResearchResearch PersonnelResearch Project GrantsResourcesScienceScientistStudentsSurveysTechnologyTrainingTraining ActivityTraining ProgramsUnited States National Institutes of HealthUniversitiesbasebig biomedical databiomedical informaticscareercareer developmentcollaborative environmentcomparative effectivenesscomputer sciencedata accessdata miningeducation researcheffectiveness researchexperiencefaculty mentorimprovedimproved outcomeinformation organizationinstrumentlaboratory experiencelaboratory modulemeetingsmultidisciplinarynew technologynext generationpopulation healthpredictive modelingprogramsskillsstatisticsstudent trainingsuccesstooltraining opportunityworking group
项目摘要
DESCRIPTION: As the era of "Big Data" is dawning on biomedical research, multiple types of biomedical data, including phenotypic, molecular (including -omics), clinical, imaging, behavioral, and environmental data is being generated on an unprecedented scale with high volume, variety and velocity. These datasets are increasingly large and complex, challenging our current abilities for data representation, integration and analysis for improving outcomes and reducing healthcare costs. It is well-recognized that the greatest challenge to leveraging the significant potentials of Big Data is in educating and recruiting future computational and data scientists who have the background, training and experience to master fundamental opportunities in biomedical sciences. This demands interdisciplinary education and hands-on practicum training on understanding the application, analysis, limitations, and value of the Big Data. To bridge this knowledge gap for the U.S. biomedical workforce, we propose to develop a research educational program-Big Data Coursework for Computational Medicine (BDC4CM)-that will instruct students, fellows and scientists in the use of specific new methods and tools fo Big Data by providing tailored, in-depth instruction, hands-on laboratory modules, and case studies on Big Data access, integration, processing and analysis. Offered by highly interdisciplinary and experienced faculty from Mayo Clinic and the University of Minnesota, this program will provide a short- term training opportunity on Big Data methods and approaches for: 1) data and knowledge representation standards; 2) information extraction and natural language processing; 3) visualization analytics; 4) data mining and predictive modeling; 5) privacy and ethics; and 6) applications in comparative effectiveness research and population health research and improvement. Our primary educational goal is to prepare the next generation of innovators and visionaries in the emerging, multidimensional field of Big Data Science in healthcare, as well as to develop a future workforce that fulfills industry needs and increases U.S. competitiveness in healthcare technologies and applications.
产品说明:随着“大数据”时代在生物医学研究中的到来,多种类型的生物医学数据,包括表型、分子(包括组学)、临床、成像、行为和环境数据,正在以前所未有的规模以高容量、多样性和速度产生。这些数据集越来越大,越来越复杂,挑战着我们目前的数据表示,集成和分析能力,以改善结果并降低医疗成本。众所周知,利用大数据巨大潜力的最大挑战是教育和招聘未来的计算和数据科学家,他们具有掌握生物医学科学基本机会的背景,培训和经验。这需要跨学科教育和实践培训,以了解大数据的应用,分析,局限性和价值。为了弥合美国生物医学劳动力的这一知识差距,我们建议开发一个研究教育计划-计算医学大数据课程(BDC 4CM)-这将指导学生,研究员和科学家使用特定的新方法和工具,通过提供量身定制的,深入的指导,动手实验室模块,以及大数据访问,集成,处理和分析的案例研究。由来自马约诊所和明尼苏达大学的高度跨学科和经验丰富的教师提供,该计划将提供关于大数据方法和方法的短期培训机会:1)数据和知识表示标准; 2)信息提取和自然语言处理; 3)可视化分析; 4)数据挖掘和预测建模; 5)隐私和道德;(6)在比较有效性研究和人群健康研究与改善中的应用。我们的主要教育目标是在医疗保健大数据科学的新兴多维领域培养下一代创新者和远见者,以及培养满足行业需求并提高美国在医疗保健技术和应用方面竞争力的未来劳动力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER G CHUTE其他文献
CHRISTOPHER G CHUTE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER G CHUTE', 18)}}的其他基金
Iron-CLAD: securely advancing AoU participant characterization with provenplatforms and collaborations
Iron-CLAD:通过经过验证的平台和协作安全地推进 AoU 参与者特征描述
- 批准号:
10829135 - 财政年份:2023
- 资助金额:
$ 6.83万 - 项目类别:
Johns Hopkins Training Program in Biomedical Informatics and Data Science
约翰霍普金斯大学生物医学信息学和数据科学培训计划
- 批准号:
10406045 - 财政年份:2022
- 资助金额:
$ 6.83万 - 项目类别:
Johns Hopkins Training Program in Biomedical Informatics and Data Science
约翰霍普金斯大学生物医学信息学和数据科学培训计划
- 批准号:
10620202 - 财政年份:2022
- 资助金额:
$ 6.83万 - 项目类别:
Computational LOINC to Support Biomedical Research at Scale
计算 LOINC 支持大规模生物医学研究
- 批准号:
10395413 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
Computational LOINC to Support Biomedical Research at Scale
计算 LOINC 支持大规模生物医学研究
- 批准号:
10610911 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
A National Center for Digital Health Informatics Innovation
国家数字健康信息学创新中心
- 批准号:
10437464 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
CD2H - National COVID Cohort Collaborative (N3C)
CD2H - 国家新冠肺炎队列协作 (N3C)
- 批准号:
10320152 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
A National Center for Digital Health Informatics Innovation
国家数字健康信息学创新中心
- 批准号:
10464821 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
Computational LOINC to Support Biomedical Research at Scale
计算 LOINC 支持大规模生物医学研究
- 批准号:
10093337 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 6.83万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 6.83万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 6.83万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 6.83万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 6.83万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 6.83万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 6.83万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 6.83万 - 项目类别:
Research Grant