Johns Hopkins Training Program in Biomedical Informatics and Data Science

约翰霍普金斯大学生物医学信息学和数据科学培训计划

基本信息

  • 批准号:
    10406045
  • 负责人:
  • 金额:
    $ 32.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

 PROJECT SUMMARY Johns Hopkins University has recently re-established a multi-disciplinary, multi-school education program in Biomedical Informatics and Data Science (BIDS). The program is centrally coordinated and managed by the newly established Section of Biomedical Informatics and Data Science (BIDS) in the Division of General Internal Medicine. Faculty are drawn from the Johns Hopkins School of Medicine, the Bloomberg School of Public Health, the Whiting School of Engineering, the School of Nursing, and the Krieger School of Arts and Sciences. The program is structured around four tracks: Translational Bioinformatics, Clinical Research Informatics, Healthcare/Clinical Informatics, and Public Health Informatics. The program is built on the decades of informatics training tradition fostered by the Welch Medical Library and the Division of Health Sciences Informatics, now consolidated in the new BIDS Section. The new organization has established tight integration with the University and School of Medicine Education leadership, support systems, and infrastructure. We have revamped and extended our core curriculum to balance traditional informatics topics with current data science principles and methods. Specialized curricula have been developed in depth for each academic track of the program. Because of our newly formalized administrative structure, students are now free to take elective courses anywhere in the University with tuition reciprocity. Students also have access to the deep bench of research programs across informatics, computer science, biomedical engineering, and data science throughout the university, anchored by an ever-growing portfolio of BIDS grants and cooperative agreements in the BIDS Section such as the National COVID Cohort Collaborative (N3C). Thus, BIDS students have unprecedented opportunities for applied practica at depth to enrich and reinforce their education, provide a basis for theses, and more importantly achieve experience as collaborators, contributors, and authors. The University and School of Medicine provide state-of-the-art clinical and basic science data-analytics environments, including our Secure Analytic Framework Environment (SAFE) virtual machines, the Precision Medicine Analytics Platform (PMAP), the state HIE population-based EHR analyses platform (on PMAP), and well-curated clinical data warehouses in OMOP, PCORNet, ACT, and TriNetX formats. Training in biomedical ethics and the responsible conduct of research is deeply embedded in all practica involving patient data. Students have opportunity to work with well-established, well-funded research mentors, and to receive instruction from faculty with a deep commitment to education and training. The strengthening of translational science, multidisciplinary teams, and enterprise-class infrastructure and computer support across Johns Hopkins University provides students with opportunities to witness and participate in the new shape of collaborative science into the future.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHRISTOPHER G CHUTE其他文献

CHRISTOPHER G CHUTE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHRISTOPHER G CHUTE', 18)}}的其他基金

Iron-CLAD: securely advancing AoU participant characterization with provenplatforms and collaborations
Iron-CLAD:通过经过验证的平台和协作安全地推进 AoU 参与者特征描述
  • 批准号:
    10829135
  • 财政年份:
    2023
  • 资助金额:
    $ 32.58万
  • 项目类别:
Johns Hopkins Training Program in Biomedical Informatics and Data Science
约翰霍普金斯大学生物医学信息学和数据科学培训计划
  • 批准号:
    10620202
  • 财政年份:
    2022
  • 资助金额:
    $ 32.58万
  • 项目类别:
Computational LOINC to Support Biomedical Research at Scale
计算 LOINC 支持大规模生物医学研究
  • 批准号:
    10395413
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Computational LOINC to Support Biomedical Research at Scale
计算 LOINC 支持大规模生物医学研究
  • 批准号:
    10610911
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
A National Center for Digital Health Informatics Innovation
国家数字健康信息学创新中心
  • 批准号:
    10437464
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
CD2H - National COVID Cohort Collaborative (N3C)
CD2H - 国家新冠肺炎队列协作 (N3C)
  • 批准号:
    10320152
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Data Integration and Quality Core
数据集成和质量核心
  • 批准号:
    10678984
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
A National Center for Digital Health Informatics Innovation
国家数字健康信息学创新中心
  • 批准号:
    10464821
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Data Integration and Quality Core
数据集成和质量核心
  • 批准号:
    10274378
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Computational LOINC to Support Biomedical Research at Scale
计算 LOINC 支持大规模生物医学研究
  • 批准号:
    10093337
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:

相似海外基金

HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
  • 批准号:
    2318404
  • 财政年份:
    2023
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
  • 批准号:
    10552484
  • 财政年份:
    2023
  • 资助金额:
    $ 32.58万
  • 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 32.58万
  • 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
  • 批准号:
    480914
  • 财政年份:
    2023
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
  • 批准号:
    FL210100071
  • 财政年份:
    2022
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Australian Laureate Fellowships
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
  • 批准号:
    22K02974
  • 财政年份:
    2022
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
  • 批准号:
    10517004
  • 财政年份:
    2022
  • 资助金额:
    $ 32.58万
  • 项目类别:
Basic Science Core - Imaging
基础科学核心 - 成像
  • 批准号:
    10588228
  • 财政年份:
    2022
  • 资助金额:
    $ 32.58万
  • 项目类别:
UCSF - UCB TRAC Basic Science CORE
UCSF - UCB TRAC 基础科学核心
  • 批准号:
    10674711
  • 财政年份:
    2022
  • 资助金额:
    $ 32.58万
  • 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
  • 批准号:
    10431468
  • 财政年份:
    2022
  • 资助金额:
    $ 32.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了