Intracellular switching using genetically engineered protein microdomains
使用基因工程蛋白质微结构域进行细胞内转换
基本信息
- 批准号:8865428
- 负责人:
- 金额:$ 31.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionBindingBiocompatible MaterialsBiologicalBiological ModelsBiological ProcessBiologyCaveolinsCell SizeCell Surface ReceptorsCell membraneCell modelCell physiologyCell surfaceCellsCellular biologyChimeric ProteinsClathrinClathrin Heavy ChainsClathrin Light ChainsClathrin-Coated VesiclesComplexCytosolDNADataDimerizationDiseaseDynaminElastinEndocytosisEngineeringEpidermal Growth Factor ReceptorEventFluorescence MicroscopyG-Protein-Coupled ReceptorsGenesGenetic EngineeringGenetic TranscriptionGlassGoalsGolgi ApparatusImmunofluorescence ImmunologicInfectionKnock-outLibrariesLifeLightingMacromolecular ComplexesMalignant NeoplasmsMediatingMembraneModelingMolecularMolecular StructureMono-SNamesNuclearOrganellesPathway interactionsPharmaceutical PreparationsPhasePhosphorylationPhosphotransferasesPhysiologicalPolymersPopulationProcessProteinsReceptor Protein-Tyrosine KinasesReceptor SignalingRecoveryRegulationReportingResearch Project GrantsSTAT proteinSeriesShapesSignal TransductionSmall Interfering RNASorting - Cell MovementSpecificityStructureTechnologyTemperatureTestingTherapeuticTimeWestern Blottingbasecaveolin 1clinically relevantcopolymerdesigndrug discoveryflotillinhuman diseaseimprovedinformation processinginhibitor/antagonistinsightknock-downnovelpolypeptidepromoterprotein functionpublic health relevanceresponseself assemblysignal processingsmall moleculestemsynthetic biologytooltraffickingtranscription factor
项目摘要
DESCRIPTION Intracellular switching using genetically engineered protein microdomains Biology is unparalleled in the replication of complex structures with diverse functions on the molecular and cellular scale; however, our ability to engineer functional materials at or below the
size of the cell remains primitive. By using biological materials to assemble structures, process information, and harness energy, the emerging field of synthetic biology may bridge the gap between current technology and that needed to study and intervene in disease. Towards this futuristic goal, this project elaborates on a platform discovered by our team to control functional
structures that are 10-1000 times smaller than a cell. These structures are based on polypeptides; therefore, they can be encoded in DNA and grown inside of living cells. Our group recently reported that temperature-responsive protein polymers expressed in the cytosol assemble organelle-sized structures within minutes of an increase of 1 degree Celsius. We named these structures genetically engineered protein microdomains, reported that they can either sort or co-assemble intact fusion proteins, and that their assembly can control a model cellular internalization pathway called clathrin-mediated endocytosis. Now we present preliminary evidence that these microdomains can activate a model cell-surface receptor and drive its internalization. This research project is designed to validate and expand the potential applications for these microdomains. The overall hypothesis is that through design, these microdomains can stimulate, deactivate, or respond to target cellular processes. Three aims are proposed: Aim 1) Manipulation of endocytotic pathways using microdomains; Aim 2) Interrogating cell signaling using ELP microdomains; and Aim 3) Expanding microdomain technology. This application innovates in three main ways: i) our interdisciplinary team is the first to report that intracellular ELPs generate microdomains that exert control over cellular pathways; ii) unlike traditional mechanisms for modulating protein activity, ELP microdomains can be activated or deactivated rapidly in live cells; and iii) this project will generalize these strategies so that they can be used to target a broad array of cellular functions. The successful demonstration of this approach is intended to shift the paradigm for how cellular biology studies are performed, enabling precise manipulation of biological processes that are fundamentally important to drug discovery. A comprehensive series of studies will be performed to demonstrate the breadth of potential applications for microdomain assembly within the cell. When completed, this project will deliver a biomolecular toolbox of broad utility to study biological processes associated with human disease.
生物学在分子和细胞尺度上复制具有不同功能的复杂结构方面是无与伦比的;然而,我们在分子水平或低于分子水平上设计功能材料的能力,
细胞的大小保持原始。通过使用生物材料组装结构、处理信息和利用能量,新兴的合成生物学领域可能会弥合当前技术与研究和干预疾病所需技术之间的差距。为了实现这一未来的目标,该项目详细阐述了我们的团队发现的一个平台,以控制功能
比细胞小10-1000倍的结构。这些结构基于多肽;因此,它们可以在DNA中编码并在活细胞内生长。我们的研究小组最近报告说,细胞质中表达的温度响应性蛋白质聚合物在1摄氏度升高的几分钟内组装成细胞器大小的结构。我们将这些结构命名为基因工程蛋白质微结构域,报道了它们可以分选或共组装完整的融合蛋白,并且它们的组装可以控制称为网格蛋白介导的内吞作用的模型细胞内化途径。现在,我们提出了初步的证据,这些微区可以激活模型细胞表面受体,并驱动其内化。该研究项目旨在验证和扩展这些微域的潜在应用。总体假设是,通过设计,这些微区可以刺激,灭活或响应靶细胞过程。提出了三个目标:目的1)使用微结构域操纵内吞途径;目的2)使用ELP微结构域询问细胞信号传导;和目的3)扩展微结构域技术。该应用在三个主要方面进行了创新:i)我们的跨学科团队首次报告细胞内ELP产生对细胞通路施加控制的微结构域; ii)与传统的调节蛋白质活性的机制不同,ELP微结构域可以在活细胞中快速激活或失活; iii)该项目将推广这些策略,以便它们可以用于靶向广泛的细胞功能。这种方法的成功演示旨在改变如何进行细胞生物学研究的范式,从而能够精确操纵对药物发现至关重要的生物过程。将进行一系列全面的研究,以证明细胞内微区组装的潜在应用的广度。完成后,该项目将提供一个具有广泛实用性的生物分子工具箱,用于研究与人类疾病相关的生物过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Andrew MacKay其他文献
John Andrew MacKay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Andrew MacKay', 18)}}的其他基金
A rapid, reversible switch for controlling intracellular trafficking
用于控制细胞内运输的快速、可逆开关
- 批准号:
7978859 - 财政年份:2010
- 资助金额:
$ 31.74万 - 项目类别:
A rapid, reversible switch for controlling intracellular trafficking
用于控制细胞内运输的快速、可逆开关
- 批准号:
8094406 - 财政年份:2010
- 资助金额:
$ 31.74万 - 项目类别:
pH sensitive elastin-like-peptides for tumor targeting
用于肿瘤靶向的 pH 敏感弹性蛋白样肽
- 批准号:
7156669 - 财政年份:2006
- 资助金额:
$ 31.74万 - 项目类别:
pH sensitive elastin-like-peptides for tumor targeting
用于肿瘤靶向的 pH 敏感弹性蛋白样肽
- 批准号:
7262427 - 财政年份:2006
- 资助金额:
$ 31.74万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 31.74万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 31.74万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 31.74万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 31.74万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 31.74万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 31.74万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 31.74万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 31.74万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 31.74万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 31.74万 - 项目类别:
Discovery Projects














{{item.name}}会员




