Cellular and gene regulatory mechanisms of whole body regeneration in Botryllus Schlosseri

灰霉病菌全身再生的细胞和基因调控机制

基本信息

项目摘要

All multicellular organisms originate from a small set of pluripotent embryonic stem cells that expand and differentiate into tissues and organs of a mature individual, and organisms from worms to humans use a highly conserved set of core developmental pathways to complete the process of embryogenesis. However, in adults during normal growth and aging, or after injury, differentiated cells and organs must be replenished or regenerated. Regeneration is carried out by long-lived, usually lineage-restricted stem cells that retain the capacity to expand and differentiate throughout the lifespan of the individual. However, the cellular and molecular mechanisms underlying regenerative development of most tissues are not well understood. More importantly, despite the deep conservation of embryonic developmental pathways, the degree to which different organisms can regenerate tissues and organs following injury is not a conserved feature throughout evolution: a salamander can regenerate an amputated limb, but a human cannot. Why is this true? This grant is focused on studying the regenerative abilities of a basal chordate organism, the colonial ascidian Botryllus schlosseri, to explore these questions. Using a simple surgical procedure, we can induce Botryllus to regenerate an entire body, including a heart, GI tract, pharynx, vasculature, neural and endocrine system- and gametes, from fragments of an extracorporeal vascular bed. This process, called whole body regeneration (WBR), occurs rapidly (3-6 days), and ascidians are the only chordates that can regenerate entire bodies, thus we can dissect how highly conserved developmental pathways are redeployed during regeneration of any tissue. Botryllus also provides unique ways to study WBR, for example, the vasculature is sessile and transparent, and easy to visualize, label and manipulate. Importantly, we have also recently developed a rescue/reconstitution assay that will allow us to prospectively isolate the cells responsible, as well as characterize and functionally assess developmental pathways underlying WBR. This R21 grant is designed to develop this new system, and we propose to: 1) utilize limiting dilution transplantation assays and cell labeling transplantation strategies to assess whether progenitor cells are lineage restricted or pluripotent; and, 2) use gene expression profiling of proliferating cells at different stages during regeneration to identify genes and signaling pathways that regulate stem cell function and induce recruitment and proliferation of circulatory stem cells. We will then functionally test the role of a subset of regenerative pathways and gene regulatory mechanisms using small molecule inhibitors and RNAi. Our goals are that by the end of this 2-year grant, we will have completed a large database of differentially expressed genes, completed initial genetic and functional characterization the developmental pathways underlying regeneration, as well as either having isolated, or have a robust methodology to purify the cells responsible and dissect their role in regeneration. By characterizing the stem cell population responsible for whole body regeneration and identifying genes, signaling pathways and the microenvironment that regulate stem cell recruitment, proliferation and differentiation during regenerative growth, these experiments will greatly advance Botryllus as a model system for the study of genes conserved in stem cell and regenerative biology, and will advance our understanding of human stem-cell function and tissue regeneration.
所有的多细胞生物都起源于一小群多能胚胎干细胞

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anthony W De Tomaso其他文献

Anthony W De Tomaso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anthony W De Tomaso', 18)}}的其他基金

Developing a new chordate model for stem cell biology and regeneration
开发用于干细胞生物学和再生的新脊索动物模型
  • 批准号:
    10373777
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
Developing a new chordate model for stem cell biology and regeneration
开发用于干细胞生物学和再生的新脊索动物模型
  • 批准号:
    10580589
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
Allorecognition, parasitic stem cells and regeneration in a basal chordate
基底脊索动物的同种识别、寄生干细胞和再生
  • 批准号:
    10322423
  • 财政年份:
    2021
  • 资助金额:
    $ 18.58万
  • 项目类别:
Allorecognition, parasitic stem cells and regeneration in a basal chordate
基底脊索动物的同种识别、寄生干细胞和再生
  • 批准号:
    10557096
  • 财政年份:
    2021
  • 资助金额:
    $ 18.58万
  • 项目类别:
Cell competition and stem cell parasitism in a basal chordate
基底脊索动物的细胞竞争和干细胞寄生
  • 批准号:
    10017299
  • 财政年份:
    2019
  • 资助金额:
    $ 18.58万
  • 项目类别:
Molecular mechanisms of allorecognition in a basal chordate
基底脊索动物同种异体识别的分子机制
  • 批准号:
    9290237
  • 财政年份:
    2017
  • 资助金额:
    $ 18.58万
  • 项目类别:
Molecular mechanisms of allorecognition in a basal chordate
基底脊索动物同种异体识别的分子机制
  • 批准号:
    9433671
  • 财政年份:
    2017
  • 资助金额:
    $ 18.58万
  • 项目类别:
Aging and Regeneration in a basal chordate
基底脊索动物的衰老和再生
  • 批准号:
    8603399
  • 财政年份:
    2010
  • 资助金额:
    $ 18.58万
  • 项目类别:
Aging and Regeneration in a basal chordate
基底脊索动物的衰老和再生
  • 批准号:
    8723026
  • 财政年份:
    2010
  • 资助金额:
    $ 18.58万
  • 项目类别:
Aging and Regeneration in a basal chordate
基底脊索动物的衰老和再生
  • 批准号:
    8307840
  • 财政年份:
    2010
  • 资助金额:
    $ 18.58万
  • 项目类别:

相似海外基金

Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
  • 批准号:
    10752404
  • 财政年份:
    2023
  • 资助金额:
    $ 18.58万
  • 项目类别:
The Health of Aging Parents of Adult Children with Serious Conditions
患有严重疾病的成年子女的年迈父母的健康
  • 批准号:
    10660046
  • 财政年份:
    2023
  • 资助金额:
    $ 18.58万
  • 项目类别:
Understanding Longer-Living Older Adult Research: The Summer Program on Aging
了解长寿老年人研究:老龄化夏季项目
  • 批准号:
    476343
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
Role of sensory experience in the regulation of plasticity in the developing, adult and aging brain
感官体验在发育、成人和衰老大脑可塑性调节中的作用
  • 批准号:
    RGPIN-2019-04761
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Discovery Grants Program - Individual
Adult Cognitive and Neurobiological Indicators of Aging: Impact of Adversity and Social Support
成人衰老的认知和神经生物学指标:逆境和社会支持的影响
  • 批准号:
    10365348
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
Adult Cognitive and Neurobiological Indicators of Aging: Impact of Adversity and Social Support
成人衰老的认知和神经生物学指标:逆境和社会支持的影响
  • 批准号:
    10700796
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
Endogenous barcoding to determine complex dynamics of adult neurogenesis in aging and Alzheimer's disease
内源条形码确定衰老和阿尔茨海默病中成人神经发生的复杂动态
  • 批准号:
    10651861
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
Investigating the interface of epigenetics and metabolism underlying memory formation in the adult, aging, and AD brain
研究成人、衰老和 AD 大脑中记忆形成的表观遗传学和代谢界面
  • 批准号:
    10420533
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
Endogenous barcoding to determine complex dynamics of adult neurogenesis in aging and Alzheimer's disease
内源条形码确定衰老和阿尔茨海默病中成人神经发生的复杂动态
  • 批准号:
    10846200
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
THE DEVELOPMENT OF MECHANISM-BASED ADULT STEM CELL TREATMENTS TO COMBAT AGING PATHOLOGIES
开发基于机制的成人干细胞疗法来对抗衰老病理学
  • 批准号:
    10721544
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了