Cellular and gene regulatory mechanisms of whole body regeneration in Botryllus Schlosseri
灰霉病菌全身再生的细胞和基因调控机制
基本信息
- 批准号:9375865
- 负责人:
- 金额:$ 18.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAdultAgingAnimal ModelAnimalsBiological AssayBiological ModelsBiological ProcessBiologyBloodBlood VesselsCell CycleCell Differentiation processCell LineageCell physiologyCellsChordataComplexDatabasesDevelopmentEmbryoEmbryonic DevelopmentEndocrine systemEvolutionExhibitsFailureFibroblast Growth FactorGastrointestinal tract structureGene Expression ProfilingGenesGeneticGerm CellsGoalsGrantGrowthHeartHumanIndividualInjection of therapeutic agentInjuryInvertebratesLabelLigandsLongevityMammalsMessenger RNAMethodologyMethodsMicrosatellite RepeatsMitomycinsMolecularMusNatural regenerationOperative Surgical ProceduresOrganOrganismOutcomePathway interactionsPeripheralPharyngeal structurePlayPopulationProceduresProcessProliferatingRNA InterferenceRecruitment ActivityRegulationRegulator GenesRoleSalamanderSignal PathwaySignaling ProteinSiteSmall Interfering RNAStem cell transplantStem cellsStructureSystemTestingTissuesTransplantationVertebratesascidianbasedesigndifferential expressionembryonic stem cellexperimental studyhuman stem cellsin vivolimb amputationnotch proteinnovel strategiesprogenitorprospectivereceptorreconstitutionregenerativerelating to nervous systemrepairedresponsesmall molecule inhibitorstem cell populationtissue regenerationvascular bed
项目摘要
All multicellular organisms originate from a small set of pluripotent embryonic stem cells that
expand and differentiate into tissues and organs of a mature individual, and organisms from
worms to humans use a highly conserved set of core developmental pathways to complete the
process of embryogenesis. However, in adults during normal growth and aging, or after injury,
differentiated cells and organs must be replenished or regenerated. Regeneration is carried out
by long-lived, usually lineage-restricted stem cells that retain the capacity to expand and
differentiate throughout the lifespan of the individual. However, the cellular and molecular
mechanisms underlying regenerative development of most tissues are not well understood.
More importantly, despite the deep conservation of embryonic developmental pathways, the
degree to which different organisms can regenerate tissues and organs following injury is not a
conserved feature throughout evolution: a salamander can regenerate an amputated limb, but a
human cannot. Why is this true? This grant is focused on studying the regenerative abilities of a
basal chordate organism, the colonial ascidian Botryllus schlosseri, to explore these questions.
Using a simple surgical procedure, we can induce Botryllus to regenerate an entire body,
including a heart, GI tract, pharynx, vasculature, neural and endocrine system- and gametes,
from fragments of an extracorporeal vascular bed. This process, called whole body regeneration
(WBR), occurs rapidly (3-6 days), and ascidians are the only chordates that can regenerate
entire bodies, thus we can dissect how highly conserved developmental pathways are
redeployed during regeneration of any tissue. Botryllus also provides unique ways to study
WBR, for example, the vasculature is sessile and transparent, and easy to visualize, label and
manipulate. Importantly, we have also recently developed a rescue/reconstitution assay that will
allow us to prospectively isolate the cells responsible, as well as characterize and functionally
assess developmental pathways underlying WBR. This R21 grant is designed to develop this
new system, and we propose to: 1) utilize limiting dilution transplantation assays and cell
labeling transplantation strategies to assess whether progenitor cells are lineage restricted or
pluripotent; and, 2) use gene expression profiling of proliferating cells at different stages during
regeneration to identify genes and signaling pathways that regulate stem cell function and
induce recruitment and proliferation of circulatory stem cells. We will then functionally test the
role of a subset of regenerative pathways and gene regulatory mechanisms using small
molecule inhibitors and RNAi. Our goals are that by the end of this 2-year grant, we will have
completed a large database of differentially expressed genes, completed initial genetic and
functional characterization the developmental pathways underlying regeneration, as well as
either having isolated, or have a robust methodology to purify the cells responsible and dissect
their role in regeneration.
By characterizing the stem cell population responsible for whole body regeneration and
identifying genes, signaling pathways and the microenvironment that regulate stem cell
recruitment, proliferation and differentiation during regenerative growth, these experiments will
greatly advance Botryllus as a model system for the study of genes conserved in stem cell and
regenerative biology, and will advance our understanding of human stem-cell function and
tissue regeneration.
所有多细胞生物都起源于一小部分多能胚胎干细胞,
扩张并分化成成熟个体的组织和器官,
蠕虫到人类使用一套高度保守的核心发育途径来完成
胚胎发生的过程。然而,在正常生长和衰老期间或受伤后的成年人中,
分化的细胞和器官必须得到补充或再生。再生被执行
由长寿的,通常是谱系限制的干细胞,保留了扩展的能力,
在个体的整个生命周期中是有区别的。然而,细胞和分子
大多数组织再生发育的潜在机制还不清楚。
更重要的是,尽管胚胎发育途径的深度保护,
不同的生物体在损伤后再生组织和器官的程度并不相同。
在整个进化过程中保守的特征:蝾螈可以再生截肢,但
人不能。为什么这是真的?这项资助的重点是研究再生能力的一个
基底脊索动物,殖民海鞘Botryllus schlosseri,探索这些问题。
通过一个简单的外科手术,我们可以诱导葡萄球菌再生一个完整的身体,
包括心脏、胃肠道、咽、脉管系统、神经和内分泌系统-以及配子,
体外血管床的碎片这个过程,叫做全身再生
(WBR),发生迅速(3-6天),海鞘是唯一可以再生的脊索动物
因此,我们可以解剖高度保守的发育途径,
在任何组织再生过程中重新部署。Botryllus还提供了独特的方法来研究
例如,在WBR中,脉管系统是无柄和透明的,并且易于可视化、标记和观察。
操纵重要的是,我们最近还开发了一种拯救/重建测定,
使我们能够前瞻性地分离出负责的细胞,以及表征和功能
评估WBR潜在的发展途径。R21的目的是开发
新系统,我们建议:1)利用有限稀释移植试验和细胞
标记移植策略以评估祖细胞是否是谱系限制的或
多能性;以及,2)使用增殖细胞在不同阶段的基因表达谱,
再生,以确定调节干细胞功能的基因和信号通路,
诱导循环干细胞募集和增殖。然后,我们将对
再生途径和基因调控机制的一个子集的作用,使用小
分子抑制剂和RNAi。我们的目标是,在这两年的赠款结束时,我们将有
完成了差异表达基因的大型数据库,完成了初步的遗传学和
功能表征再生基础的发育途径,以及
或者已经分离,或者有一个强大的方法来纯化负责的细胞,
在再生中的作用。
通过表征负责全身再生的干细胞群体,
识别调控干细胞的基因、信号通路和微环境
在再生生长过程中的招募、增殖和分化,这些实验将
极大地推进了葡萄球菌作为研究干细胞中保守基因的模型系统,
再生生物学,并将促进我们对人类干细胞功能的理解,
组织再生
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony W De Tomaso其他文献
Anthony W De Tomaso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony W De Tomaso', 18)}}的其他基金
Developing a new chordate model for stem cell biology and regeneration
开发用于干细胞生物学和再生的新脊索动物模型
- 批准号:
10373777 - 财政年份:2022
- 资助金额:
$ 18.58万 - 项目类别:
Developing a new chordate model for stem cell biology and regeneration
开发用于干细胞生物学和再生的新脊索动物模型
- 批准号:
10580589 - 财政年份:2022
- 资助金额:
$ 18.58万 - 项目类别:
Allorecognition, parasitic stem cells and regeneration in a basal chordate
基底脊索动物的同种识别、寄生干细胞和再生
- 批准号:
10322423 - 财政年份:2021
- 资助金额:
$ 18.58万 - 项目类别:
Allorecognition, parasitic stem cells and regeneration in a basal chordate
基底脊索动物的同种识别、寄生干细胞和再生
- 批准号:
10557096 - 财政年份:2021
- 资助金额:
$ 18.58万 - 项目类别:
Cell competition and stem cell parasitism in a basal chordate
基底脊索动物的细胞竞争和干细胞寄生
- 批准号:
10017299 - 财政年份:2019
- 资助金额:
$ 18.58万 - 项目类别:
Molecular mechanisms of allorecognition in a basal chordate
基底脊索动物同种异体识别的分子机制
- 批准号:
9290237 - 财政年份:2017
- 资助金额:
$ 18.58万 - 项目类别:
Molecular mechanisms of allorecognition in a basal chordate
基底脊索动物同种异体识别的分子机制
- 批准号:
9433671 - 财政年份:2017
- 资助金额:
$ 18.58万 - 项目类别:
相似海外基金
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
- 批准号:
10752404 - 财政年份:2023
- 资助金额:
$ 18.58万 - 项目类别:
The Health of Aging Parents of Adult Children with Serious Conditions
患有严重疾病的成年子女的年迈父母的健康
- 批准号:
10660046 - 财政年份:2023
- 资助金额:
$ 18.58万 - 项目类别:
Understanding Longer-Living Older Adult Research: The Summer Program on Aging
了解长寿老年人研究:老龄化夏季项目
- 批准号:
476343 - 财政年份:2022
- 资助金额:
$ 18.58万 - 项目类别:
Role of sensory experience in the regulation of plasticity in the developing, adult and aging brain
感官体验在发育、成人和衰老大脑可塑性调节中的作用
- 批准号:
RGPIN-2019-04761 - 财政年份:2022
- 资助金额:
$ 18.58万 - 项目类别:
Discovery Grants Program - Individual
Adult Cognitive and Neurobiological Indicators of Aging: Impact of Adversity and Social Support
成人衰老的认知和神经生物学指标:逆境和社会支持的影响
- 批准号:
10365348 - 财政年份:2022
- 资助金额:
$ 18.58万 - 项目类别:
Adult Cognitive and Neurobiological Indicators of Aging: Impact of Adversity and Social Support
成人衰老的认知和神经生物学指标:逆境和社会支持的影响
- 批准号:
10700796 - 财政年份:2022
- 资助金额:
$ 18.58万 - 项目类别:
Endogenous barcoding to determine complex dynamics of adult neurogenesis in aging and Alzheimer's disease
内源条形码确定衰老和阿尔茨海默病中成人神经发生的复杂动态
- 批准号:
10651861 - 财政年份:2022
- 资助金额:
$ 18.58万 - 项目类别:
Investigating the interface of epigenetics and metabolism underlying memory formation in the adult, aging, and AD brain
研究成人、衰老和 AD 大脑中记忆形成的表观遗传学和代谢界面
- 批准号:
10420533 - 财政年份:2022
- 资助金额:
$ 18.58万 - 项目类别:
Endogenous barcoding to determine complex dynamics of adult neurogenesis in aging and Alzheimer's disease
内源条形码确定衰老和阿尔茨海默病中成人神经发生的复杂动态
- 批准号:
10846200 - 财政年份:2022
- 资助金额:
$ 18.58万 - 项目类别:
THE DEVELOPMENT OF MECHANISM-BASED ADULT STEM CELL TREATMENTS TO COMBAT AGING PATHOLOGIES
开发基于机制的成人干细胞疗法来对抗衰老病理学
- 批准号:
10721544 - 财政年份:2022
- 资助金额:
$ 18.58万 - 项目类别: