Digital Specimen Tomosynthesis for Volumetric Imaging of Lumpectomy Specimens
用于肿瘤切除标本体积成像的数字标本断层合成
基本信息
- 批准号:9085109
- 负责人:
- 金额:$ 48.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAlgorithmsAnatomyAreaBreast-Conserving SurgeryClinicClinicalDataData QualityDecision MakingDetectionDevelopmentDiagnostic radiologic examinationEffectivenessEnsureEvaluationEvaluation StudiesExcisionForce of GravityFrequenciesGeometryHealthImageImage-Guided SurgeryImaging DeviceIncidenceKnowledgeLettersLimb structureMethodsModificationMorphologic artifactsOperating RoomsOperative Surgical ProceduresPathologicPathologistPathology processesPerformanceProbabilityRadiation therapyResolutionRoentgen RaysRotationSamplingScanningSolidSourceSpecimenSpottingsStructureSurgical marginsSystemTimeX-Ray Computed Tomographybasebreast lumpectomybreast surgeryclinical applicationclinically significantcontrast enhancedcostdesigndigitaldigital imagingdistractionexperienceimaging systemimprovedinnovationpre-clinicalpreclinical studyprogramsreconstructionsoft tissuetool
项目摘要
DESCRIPTION (provided by applicant): The objective of the project is to develop a digital specimen tomosynthesis (DST) system, based upon the clinical specimen radiography (SR) system for performing rapid, volumetric imaging of breast lumpectomy specimen in or near a surgical suite. Even though SR is used currently for surgical positive-margin evaluation, pathological examination guidance, and other clinical/preclinical applications, its utility is limied by the lack of volumetric information about specimens in SR images. The proposed DST can yield useful volumetric information about the specimen by virtue of which overlapping anatomic structures can be discerned, yet involving only minimal modifications to clinical SR. It can accomplish the imaging task within 1-2 minutes, an acceptable clinical time for a rapid evaluation of the specimen in identifying positive margins in and near an operating suite, thus reducing the frequency of positive margins being identified, and of consequent re- excisions, post surgically. It can also be used for improving accuracy in pathologic examinations by providing guidance to the pathologist to focus on regions in the specimen with the highest probability of positivity, thus increasing the sensitivity of the pathology process by reducing the
incidence of missed positive regions due to suboptimal sampling. Because multiple SR images, including the ones used in current clinic evaluation, are collected in DST imaging, the DST thus retains the full functionality of current SR, and would not alter the workflow in the operating room, but only enhance the quality of information obtained from imaging, leading to improved decision making. Because the DST is designed based upon an inexpensive SR system that is used widely in breast-surgery suites, it provides an economical, practical solution which can readily be disseminated. Knowledge gained in the project can be exploited for the design and development of advanced, application- specific emerging X-ray-based tomographic imaging systems in image-guided surgery and radiation therapy, and in extremity imaging. The specific aims of the project are (1) to develop DST for rapid, volumetric imaging of lumpectomy specimen; (2) to develop algorithms for enabling DST imaging of lumpectomy specimen; and (3) to evaluate the performance of DST-scan configurations/algorithms.
描述(由申请人提供):本项目的目的是开发一种基于临床标本X线摄影(SR)系统的数字标本断层合成(DST)系统,用于在手术室内或附近对乳房肿块切除术标本进行快速体积成像。尽管SR目前用于手术阳性边缘评估、病理检查指导和其他临床/临床前应用,但其效用受限于SR图像中关于标本的体积信息的缺乏。所提出的DST可以产生关于样本的有用的体积信息,凭借该体积信息,可以辨别重叠的解剖结构,但仅涉及对临床SR的最小修改。它可以在1-2分钟内完成成像任务,这是用于在识别手术室中和附近的阳性边缘时快速评估样本的可接受的临床时间,因此降低了识别阳性边缘的频率,以及手术后的再次切除。它还可以用于通过向病理学家提供引导以集中在样本中具有最高阳性概率的区域来提高病理检查的准确性,从而通过减少病理过程的灵敏度来增加病理过程的灵敏度。
由于次优采样而遗漏阳性区域的发生率。由于在DST成像中收集了多个SR图像,包括当前临床评价中使用的图像,因此DST保留了当前SR的全部功能,并且不会改变手术室中的工作流程,而只是提高了从成像中获得的信息的质量,从而改善了决策。由于DST是基于在乳房手术室中广泛使用的廉价SR系统设计的,因此它提供了一种经济实用的解决方案,可以很容易地推广。在该项目中获得的知识可用于设计和开发先进的、特定应用的新兴X射线断层成像系统,用于图像引导手术和放射治疗以及肢体成像。该项目的具体目标是(1)开发用于乳房肿瘤切除术标本快速体积成像的DST;(2)开发用于乳房肿瘤切除术标本DST成像的算法;以及(3)评价DST扫描配置/算法的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAOCHUAN PAN其他文献
XIAOCHUAN PAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIAOCHUAN PAN', 18)}}的其他基金
Algorithm-Enabled Auto-Calibrating Quantitative Dual-Energy CT
支持算法的自动校准定量双能 CT
- 批准号:
10448987 - 财政年份:2022
- 资助金额:
$ 48.73万 - 项目类别:
Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
- 批准号:
9978584 - 财政年份:2018
- 资助金额:
$ 48.73万 - 项目类别:
Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
- 批准号:
10224861 - 财政年份:2018
- 资助金额:
$ 48.73万 - 项目类别:
36th Annual International Conference of the IEEE Engineering in Medicine and Biol
第 36 届 IEEE 医学和生物工程国际年会
- 批准号:
8720474 - 财政年份:2014
- 资助金额:
$ 48.73万 - 项目类别:
Development of Advanced C-arm Cone-Beam CT for the Treatment of Liver Cancer
先进C型臂锥束CT治疗肝癌的开发
- 批准号:
9305887 - 财政年份:2014
- 资助金额:
$ 48.73万 - 项目类别:
Digital Specimen Tomosynthesis for Volumetric Imaging of Lumpectomy Specimens
用于肿瘤切除标本体积成像的数字标本断层合成
- 批准号:
8766676 - 财政年份:2014
- 资助金额:
$ 48.73万 - 项目类别:
Development of Advanced C-arm Cone-Beam CT for the Treatment of Liver Cancer
先进C型臂锥束CT治疗肝癌的开发
- 批准号:
8616609 - 财政年份:2014
- 资助金额:
$ 48.73万 - 项目类别:
International Symposium on Biomedical Imaging: from Nano to Macro 2011 (ISBI2011)
生物医学成像国际研讨会:从纳米到宏观2011 (ISBI2011)
- 批准号:
8133639 - 财政年份:2011
- 资助金额:
$ 48.73万 - 项目类别:
31st Annual International Conference of IEEE Engineeering in Medicine and Biology
第 31 届 IEEE 医学和生物学工程国际会议
- 批准号:
7744371 - 财政年份:2009
- 资助金额:
$ 48.73万 - 项目类别:
Optimized Cone-Beam CT for Image-Guided Radiation Therapy
用于图像引导放射治疗的优化锥束 CT
- 批准号:
7317899 - 财政年份:2007
- 资助金额:
$ 48.73万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Continuing Grant














{{item.name}}会员




