Algorithms and Software for Provably Accurate De Novo RNA-Seq Assembly
用于可证明准确的 De Novo RNA-Seq 组装的算法和软件
基本信息
- 批准号:9624586
- 负责人:
- 金额:$ 29.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-16 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): RNA-Seq has revolutionized transcriptomics and is one of the most important high-throughput sequencing assays invented in recent years. The key computational problem is that of de novo assembly: the reconstruction of the transcripts and their abundances from tens to hundreds of millions of short reads. The problem is challenging due to a confluence of several factors: large number of different transcripts (tens of thousands), long repeat across transcripts due to alternative splicing, widely varying abundances across transcripts, and the presence of read errors. Existing assemblers are mostly designed based on heuristic considerations and implement ad hoc methods that lead to unreliable transcriptome reconstructions. An accurate RNA-Seq assembler would enable more accurate identification of fusions in cancer transcriptomes, better gene annotations in model and non-model organisms, and more complete analyses of the dynamics of alternative splicing driving developmental and regulatory programs. In this proposal, we offer a systematic approach to the design of RNA-Seq assemblers based on information theoretic principles. We start by determining conditions data that guarantee that there enough information to reconstruct the transcriptome, and then propose an assembly algorithm that can reconstruct with the minimal information. This algorithm optimally uses the available read information to resolve repeats and disambiguate isoforms. A key insight derived from the information theoretic approach is that widely varying abundances across transcripts, rather than a complication, can actually be exploited as signatures of different transcripts to disambiguate among them. Based on our initial ideas, we have built, evaluated and compared an initial prototype with several existing software, on both real and simulated data. The encouraging results provide evidence that our approach, which we will fully develop, implement and evaluated during the funded period, can significantly outperform existing software. Additional functionalities such as mixed short/long read assembly, genome-assisted assembly and joint processing of multiple RNA samples, will be designed and incorporated into the software as part of the proposed project.
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An interpretable framework for clustering single-cell RNA-Seq datasets.
- DOI:10.1186/s12859-018-2092-7
- 发表时间:2018-03-09
- 期刊:
- 影响因子:3
- 作者:Zhang JM;Fan J;Fan HC;Rosenfeld D;Tse DN
- 通讯作者:Tse DN
Somatic mutations render human exome and pathogen DNA more similar.
体细胞突变使人类外显子组和病原体 DNA 更加相似。
- DOI:10.1371/journal.pone.0197949
- 发表时间:2019
- 期刊:
- 影响因子:3.7
- 作者:Ebrahimzadeh,Ehsan;Engler,Maggie;Tse,David;Cristescu,Razvan;Tchamkerten,Aslan
- 通讯作者:Tchamkerten,Aslan
QAlign: aligning nanopore reads accurately using current-level modeling.
QAlign:使用电流水平建模准确对齐纳米孔读数。
- DOI:10.1093/bioinformatics/btaa875
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Joshi,Dhaivat;Mao,Shunfu;Kannan,Sreeram;Diggavi,Suhas
- 通讯作者:Diggavi,Suhas
Gram Determinants of Real Binary Tensors.
- DOI:10.1016/j.laa.2018.01.019
- 发表时间:2018-05-01
- 期刊:
- 影响因子:1.1
- 作者:Seigal A
- 通讯作者:Seigal A
A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis
- DOI:10.1186/s12859-020-3401-5
- 发表时间:2020-02-21
- 期刊:
- 影响因子:3
- 作者:Lin, Eugene;Mukherjee, Sudipto;Kannan, Sreeram
- 通讯作者:Kannan, Sreeram
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sreeram Kannan其他文献
Sreeram Kannan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sreeram Kannan', 18)}}的其他基金
Defining causal roles of genomic variants on gene regulatory networks with spatiotemporally-resolved single-cell multiomics
通过时空解析的单细胞多组学定义基因组变异对基因调控网络的因果作用
- 批准号:
10297331 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Defining causal roles of genomic variants on gene regulatory networks with spatiotemporally-resolved single-cell multiomics
通过时空解析的单细胞多组学定义基因组变异对基因调控网络的因果作用
- 批准号:
10474569 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Algorithms and Software for Provably Accurate De Novo RNA-Seq Assembly
用于可证明准确的 De Novo RNA-Seq 组装的算法和软件
- 批准号:
9145263 - 财政年份:2015
- 资助金额:
$ 29.9万 - 项目类别:
相似海外基金
Travel: NSF Student Travel Grant for 2024 ACM/IEEE International Conference on Software Engineering
旅行:2024 年 ACM/IEEE 软件工程国际会议 NSF 学生旅行补助金
- 批准号:
2413092 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Continuing Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Research Grant
MUSE: Multi-Modal Software Evolution
MUSE:多模式软件演进
- 批准号:
EP/W015927/2 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Research Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
I-Corps: Non-Invasive Software Tool for Risk Assessment of Intracranial Aneurysms (IA)
I-Corps:用于颅内动脉瘤 (IA) 风险评估的非侵入性软件工具
- 批准号:
2402381 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
HSI Pilot Project: Improving Experiential Skills for a Diverse Software Engineering Workforce via Project-based Internships
HSI 试点项目:通过基于项目的实习提高多元化软件工程人员的经验技能
- 批准号:
2345141 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
CRII: CSR: Towards an Edge-enabled Software-Defined Vehicle Framework for Dynamic Over-the-Air Updates
CRII:CSR:迈向支持边缘的软件定义车辆框架,用于动态无线更新
- 批准号:
2348151 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Automated Software Testing Platform
自动化软件测试平台
- 批准号:
10092457 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Collaborative R&D














{{item.name}}会员




