Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
基本信息
- 批准号:9365420
- 负责人:
- 金额:$ 34.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsCaringClassificationClinicalClinical DataClinical ResearchClinical TrialsClinics and HospitalsComorbidityContinuity of Patient CareDataDatabasesDrug usageEffectivenessElectronic Health RecordEpidemiologyExtravasationGoldGrowthHealthHealthcareHealthcare SystemsInformation SystemsKnowledgeLinkMedicalMedicareMedicare claimMethodsOutcomePatientsPharmaceutical PreparationsPopulation StudyProviderProxyRecommendationRecordsResearchResearch PersonnelSafetySamplingSourceStructureSystemTherapeuticWorkbasecare systemscohortcomparativecomparative effectivenesseffectiveness researchimprovedolder patientprogramsrandomized trialroutine carestudy populationtreatment effect
项目摘要
Title: Improving comparative effectiveness research through electronic health records
continuity cohorts
PI: Joshua Lin, MD, MPH
Abstract (about 30 lines)
Epidemiologic analyses of health care data can provide critical evidence on the effectiveness and safety of
therapeutics in the routine care setting since clinical trials often exclude frail and older patients who are the
primary consumers of most medications. Electronic health record (EHR) databases contain rich clinical
information vital for many comparative effectiveness studies and have been increasingly used for drug research.
There are currently more than 50 EHR-based research networks in the US. It is thus critical to understand how
we can conduct valid comparative clinical studies with EHR data. However, other than few highly integrated
plans, most US EHR systems do not have comprehensive capture of medical encounters across the care
continuum and may miss substantial amounts of information. Exposures, co-morbidities, and health outcomes
that are recorded at a clinic or hospital outside of a given EHR system are "invisible" to the investigator,
increasing misclassification or complete omission of essential variables. While such issues are pervasive, no
prior study has ever quantified the magnitude of resultant bias and how to remedy the situation if linkage of
more information is not feasible. To address this knowledge gap, we have combined longitudinal claims data
from Medicare with EHR patient data from a large multi-center health care system as a `gold standard' setup
where the claims data comprehensively capture medical information across care settings and provider systems
and EHR provides necessary clinical data. We will (1) use these `gold standard' data to identify `EHR continuity
cohorts' for whom the EHR system captures a high proportion of all encounters and evaluate whether
misclassification/omission of a list of essential variables in the comparative effectiveness research is
substantially reduced within vs outside of the EHR continuity cohort; (2) develop strategies to identify the EHR
continuity cohort based on a set of proxy indicators available in typical EHR databases and validate the
candidate prediction rules internally in a sample within the given EHR and externally using a second EHR
system that is also linked to Medicare claims data; (3) assess research validity and generalizability in the EHR
continuity cohorts in several empirical studies; and (4) Develop structured recommendation on how to conduct
comparative effectiveness research using high-validity EHR continuity cohorts in an EHR system without
linked claims data and make our program public available to facilitate future research using EHR-based
research networks.
标题:通过电子健康记录改善比较有效性研究
连续性队列
PI:约书亚林,医学博士,公共卫生硕士
摘要(约30行)
卫生保健数据的流行病学分析可以提供关于有效性和安全性的关键证据,
由于临床试验经常排除体弱和老年患者,
大多数药物的主要消费者。电子健康记录(EHR)数据库包含丰富的临床信息,
这些信息对许多比较有效性研究至关重要,并越来越多地用于药物研究。
目前,美国有50多个基于EHR的研究网络。因此,关键是要了解
我们可以用EHR数据进行有效的临床比较研究。然而,除了少数高度集成的
计划,大多数美国EHR系统没有全面捕获整个护理过程中的医疗事件
连续体,并且可能错过大量的信息。暴露、合并症和健康结局
在给定EHR系统之外的诊所或医院记录的信息对调查者是“不可见的”,
越来越多的错误分类或基本变量的完全遗漏。虽然这些问题普遍存在,但
先前的研究曾经量化了由此产生的偏差的大小,以及如果与
更多的信息是不可行的。为了解决这一知识差距,我们结合了纵向索赔数据,
将来自大型多中心医疗保健系统的EHR患者数据作为“黄金标准”设置
其中索赔数据全面捕获跨护理设置和提供者系统的医疗信息
EHR提供必要的临床数据。我们将(1)使用这些“黄金标准”数据来确定“电子健康记录的连续性
EHR系统捕获所有遭遇的高比例,并评估是否
在比较有效性研究中错误分类/遗漏了一系列基本变量,
与EHR连续性队列外相比,EHR连续性队列内的风险大幅降低;(2)制定识别EHR的策略
连续性队列的基础上,一套代理指标,可在典型的电子健康档案数据库,并验证
候选预测规则内部地在给定EHR内的样本中并且外部地使用第二EHR
系统,也与医疗保险索赔数据;(3)评估EHR中的研究有效性和普遍性
在几项实证研究中的连续性队列;以及(4)就如何进行
在EHR系统中使用高有效性EHR连续性队列进行比较有效性研究,
链接的索赔数据,并使我们的计划公开,以促进未来的研究使用EHR为基础的
研究网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSHUA K LIN其他文献
JOSHUA K LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSHUA K LIN', 18)}}的其他基金
A targeted analytical framework to optimize posthospitalization delirium pharmacotherapy in patients with Alzheimers disease and related dementias
优化阿尔茨海默病和相关痴呆患者出院后谵妄药物治疗的有针对性的分析框架
- 批准号:
10634940 - 财政年份:2023
- 资助金额:
$ 34.11万 - 项目类别:
Deprescribing antipsychotics in patients with Alzheimers disease and related dementias and behavioral disturbance in skilled nursing facilities
在熟练护理机构中取消阿尔茨海默病及相关痴呆症和行为障碍患者的抗精神病药物处方
- 批准号:
10634934 - 财政年份:2023
- 资助金额:
$ 34.11万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10672458 - 财政年份:2022
- 资助金额:
$ 34.11万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10443345 - 财政年份:2022
- 资助金额:
$ 34.11万 - 项目类别:
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
- 批准号:
10372142 - 财政年份:2020
- 资助金额:
$ 34.11万 - 项目类别:
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
- 批准号:
10581591 - 财政年份:2020
- 资助金额:
$ 34.11万 - 项目类别:
Developing dynamic prognostic and risk-stratification models for informing prescribing decisions in older adults with Coronavirus Disease 2019
开发动态预后和风险分层模型,为患有 2019 年冠状病毒病的老年人的处方决策提供信息
- 批准号:
10189838 - 财政年份:2019
- 资助金额:
$ 34.11万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9983157 - 财政年份:2017
- 资助金额:
$ 34.11万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9766389 - 财政年份:2017
- 资助金额:
$ 34.11万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Research Grant