Developing dynamic prognostic and risk-stratification models for informing prescribing decisions in older adults with Coronavirus Disease 2019
开发动态预后和风险分层模型,为患有 2019 年冠状病毒病的老年人的处方决策提供信息
基本信息
- 批准号:10189838
- 负责人:
- 金额:$ 52.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:Admission activityAdoptedAgeBedsBiological MarkersBiological ModelsCOVID-19COVID-19 pandemicCOVID-19 patientCessation of lifeCharacteristicsClinicalCodeContinuity of Patient CareDataDatabasesDerivation procedureDeteriorationDiagnosisDiagnosticDimensionsDiseaseDisease ProgressionDrug PrescriptionsEarly InterventionElderlyElectronic Health RecordHealth care facilityHomeHospitalizationHospitalsInfrastructureInpatientsIntensive Care UnitsInterventionKnowledgeLiteratureMassachusettsMeasuresMechanical VentilatorsMechanical ventilationMedicalModelingModificationMonitorOutcomePatientsPharmaceutical PreparationsPharmacological TreatmentPharmacotherapyProceduresPrognosisPrognostic FactorReportingResearch PersonnelResource AllocationResourcesRespiratory FailureRisk FactorsScanningSeverity of illnessSupportive careSystemTherapeuticTherapeutic AgentsTimeUnited States Food and Drug AdministrationUpdateValidationVulnerable Populationsadverse outcomeage effectage groupbasecare deliveryclinical applicationclinically relevantcomorbiditydata miningexperienceflexibilityhigh riskmedication safetymortalitynovelolder patientpredictive modelingprofiles in patientsprognosticprognostic modelprognostic toolprospectiverisk stratificationscreeningtoolvaccine safety
项目摘要
Project Summary
While over 80% patients with Coronavirus Disease 2019 (COVID-19) experienced only mild illness, the
mortality rates have been reported to be 6.4-13.4% in vulnerable populations, including older adults and
patients with multiple co-morbidities. Pharmacological treatments are primarily used for patients with moderate
to severe disease. Optimal prescribing of drug therapy relies heavily on accurate risk stratification based on
patient prognosis. Since it is known that COVID-19 can often cause rapid clinical deterioration, it is critical to
have a prognostic tool well-predictive of disease progression and adverse clinical outcomes, so the
pharmacological treatments or other interventions can be initiated timely. Also, during the COVID-19
pandemic, many healthcare facilities need to operate beyond regular capacity with limited resources, such as
mechanical ventilators, therapeutic agents, and intensive care unit (ICU) bed availability. A reliable prognostic
tool is essential for optimal decisions regarding medical disposition (e.g., home monitoring vs. admission) and
resource allocation (eg, ICU beds and mechanical ventilators). While there are seemingly abundant data in
prognostic prediction for patients with COVID-19, there remain two major knowledge gaps. First, all of the
existing prediction models only consider factors measured at hospital admission without incorporating dynamic
changes of biomarkers over time. The models thus have limited clinical applicability since many of these
biomarkers are repeated multiple times during a treatment course and clinicians need to know how these
dynamic changes can inform medical decisions. Second, while medication use and the initiation timing are
highly informative of disease severity, they were not used for prognostic prediction in the prior models. We aim
to build a prospective prognostic modeling system based on near-real-time electronic health record (EHR) data
from Mass General Brigham, a large care delivery network in Massachusetts that includes 2 tertiary and 11
secondary hospitals and >30 ambulatory centers. We have established the basic infrastructure and currently
receive weekly data updates. The database currently has >14,000 confirmed cases of COVID-19 and are
expanding at the rate of 500-1000 confirmed cases per week, allowing us to build prediction models with rich
data input and ability to perform prospective validation. We will develop a dynamic prognostic tool incorporating
baseline characteristics, time-varying factors with their dynamic changes, medication use and its timing to
predict key clinical outcomes. Data accrued from March to August, 2020 will be used for model derivation and
data from September to December, 2020 will be used for prospective validation. In addition to the predictors
reported in the literature, we will search for novel predictors by screening through the rich EHR data using
TreeScan, a novel, validated, statistical tool adopted by the US Food and Drug Administration (FDA) for
vaccine and drug safety surveillance. We will assess age effect modification on risk factors. This will help
researchers understand the vulnerability of older adults to COVID-19.
项目概要
虽然超过 80% 的 2019 年冠状病毒病 (COVID-19) 患者仅出现轻微症状,但
据报道,包括老年人和老年人在内的弱势群体的死亡率为 6.4-13.4%。
患有多种合并症的患者。药物治疗主要用于中度患者
至严重疾病。药物治疗的最佳处方在很大程度上依赖于基于以下因素的准确风险分层:
患者预后。由于已知 COVID-19 通常会导致临床迅速恶化,因此至关重要
有一个可以很好预测疾病进展和不良临床结果的预后工具,因此
可以及时开始药物治疗或其他干预措施。此外,在新冠肺炎 (COVID-19) 疫情期间
大流行期间,许多医疗机构需要在资源有限的情况下超出正常能力运行,例如
机械呼吸机、治疗药物和重症监护病房 (ICU) 床位可用性。可靠的预测
该工具对于医疗处置(例如家庭监护与入院)的最佳决策至关重要,并且
资源分配(例如 ICU 床位和机械呼吸机)。虽然数据看似丰富
对于 COVID-19 患者的预后预测,仍然存在两大知识差距。首先,所有的
现有的预测模型仅考虑入院时测量的因素,而没有考虑动态因素
生物标志物随时间的变化。因此,这些模型的临床适用性有限,因为其中许多模型
生物标志物在治疗过程中会重复多次,临床医生需要知道这些生物标志物是如何产生的。
动态变化可以为医疗决策提供信息。其次,虽然药物的使用和开始时间
它们可以提供有关疾病严重程度的大量信息,但在之前的模型中并未用于预后预测。我们的目标
建立基于近实时电子健康记录(EHR)数据的前瞻性预后建模系统
来自 Mass General Brigham,马萨诸塞州的一个大型护理服务网络,包括 2 个高等教育机构和 11 个
二级医院和超过 30 个门诊中心。我们已经建立了基础设施,目前
接收每周数据更新。该数据库目前有超过 14,000 例确诊的 COVID-19 病例,
以每周 500-1000 例确诊病例的速度扩张,使我们能够建立具有丰富经验的预测模型
数据输入和执行前瞻性验证的能力。我们将开发一种动态预测工具,其中包含
基线特征、随时间变化的因素及其动态变化、药物使用及其时机
预测关键的临床结果。 2020年3月至8月积累的数据将用于模型推导和
2020年9月至12月的数据将用于前瞻性验证。除了预测因子之外
据文献报道,我们将通过使用筛选丰富的 EHR 数据来寻找新的预测因子
TreeScan,美国食品和药物管理局 (FDA) 采用的一种新颖的、经过验证的统计工具
疫苗和药品安全监测。我们将评估年龄对风险因素的影响。这会有所帮助
研究人员了解老年人对 COVID-19 的脆弱性。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prospective validation of a dynamic prognostic model for identifying COVID-19 patients at high risk of rapid deterioration.
用于识别快速恶化高风险的 COVID-19 患者的动态预后模型的前瞻性验证。
- DOI:10.1002/pds.5580
- 发表时间:2023
- 期刊:
- 影响因子:2.6
- 作者:Lin,KueiyuJoshua;D'Andrea,Elvira;Desai,RishiJ;Gagne,JoshuaJ;Liu,Jun;Wang,ShirleyV
- 通讯作者:Wang,ShirleyV
Prescribing Trends of Oral Anticoagulants in US Patients With Cirrhosis and Nonvalvular Atrial Fibrillation.
- DOI:10.1161/jaha.122.026863
- 发表时间:2023-02-07
- 期刊:
- 影响因子:5.4
- 作者:Simon, Tracey G.;Schneeweiss, Sebastian;Singer, Daniel E.;Sreedhara, Sushama Kattinakere;Lin, Kueiyu Joshua
- 通讯作者:Lin, Kueiyu Joshua
Gastrointestinal prophylaxis for COVID-19: an illustration of severe bias arising from inappropriate comparators in observational studies.
- DOI:10.1016/j.jclinepi.2022.07.009
- 发表时间:2022-11
- 期刊:
- 影响因子:7.2
- 作者:Lin, Kueiyu Joshua;Feldman, William B.;Wang, Shirley V.;Umarje, Siddhi Pramod;D'Andrea, Elvira;Tesfaye, Helen;Zabotka, Luke E.;Liu, Jun;Desai, Rishi J.
- 通讯作者:Desai, Rishi J.
Antipsychotic Medication Use Among Older Adults Following Infection-Related Hospitalization.
- DOI:10.1001/jamanetworkopen.2023.0063
- 发表时间:2023-02-01
- 期刊:
- 影响因子:13.8
- 作者:Zhang, Yichi;Wilkins, James M.;Bessette, Lily Gui;York, Cassandra;Wong, Vincent;Lin, Kueiyu Joshua
- 通讯作者:Lin, Kueiyu Joshua
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSHUA K LIN其他文献
JOSHUA K LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSHUA K LIN', 18)}}的其他基金
A targeted analytical framework to optimize posthospitalization delirium pharmacotherapy in patients with Alzheimers disease and related dementias
优化阿尔茨海默病和相关痴呆患者出院后谵妄药物治疗的有针对性的分析框架
- 批准号:
10634940 - 财政年份:2023
- 资助金额:
$ 52.47万 - 项目类别:
Deprescribing antipsychotics in patients with Alzheimers disease and related dementias and behavioral disturbance in skilled nursing facilities
在熟练护理机构中取消阿尔茨海默病及相关痴呆症和行为障碍患者的抗精神病药物处方
- 批准号:
10634934 - 财政年份:2023
- 资助金额:
$ 52.47万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10672458 - 财政年份:2022
- 资助金额:
$ 52.47万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10443345 - 财政年份:2022
- 资助金额:
$ 52.47万 - 项目类别:
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
- 批准号:
10372142 - 财政年份:2020
- 资助金额:
$ 52.47万 - 项目类别:
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
- 批准号:
10581591 - 财政年份:2020
- 资助金额:
$ 52.47万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9983157 - 财政年份:2017
- 资助金额:
$ 52.47万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9766389 - 财政年份:2017
- 资助金额:
$ 52.47万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9365420 - 财政年份:2017
- 资助金额:
$ 52.47万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 52.47万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 52.47万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 52.47万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 52.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 52.47万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 52.47万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 52.47万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 52.47万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 52.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 52.47万 - 项目类别:
Research Fellowships














{{item.name}}会员




