Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
基本信息
- 批准号:10372142
- 负责人:
- 金额:$ 55.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsClinicalClinical ResearchCodeCohort StudiesComparative Effectiveness ResearchComplexConfounding Factors (Epidemiology)ConsumptionDataData SetData SourcesData StoreDatabasesElectronic Health RecordElementsEmpirical ResearchEnsureEnvironmentEquilibriumEvaluationFutureGoldHealthcareHealthcare SystemsInfluentialsKnowledgeKnowledge acquisitionLeftLinkMachine LearningManualsMassachusettsMedicalMedicare/MedicaidMethodsModelingNamesNatural Language ProcessingNorth CarolinaOperative Surgical ProceduresPatient CarePatientsPatternPerformancePhysiciansProbabilityPropertyProxyRandomized Controlled TrialsReportingResearchResearch DesignResearch PersonnelRiskRisk FactorsSemanticsSeveritiesSpecific qualifier valueStratificationStructureSymptomsSystemTechniquesTestingTexasTextTherapeuticTimeTrainingTreatment outcomeValidationWeightWorkanalytical methodbasecare deliverycare outcomescomparative effectiveness studycomparison groupcomputerizedcostdisease prognosisdisorder riskevidence baseflexibilityhealth care service utilizationhigh dimensionalityimprovedinnovationmachine learning methodnovel strategiesoperationpreservationrandomized trialresearch studyroutine caresafety studysimulationsoundtooltreatment choiceunstructured data
项目摘要
Project Summary/Abstract
The routine operation of the US Healthcare system produces an abundance of electronically-stored data that
captures the care of patients as it is provided in settings outside of controlled research environments. The
potential for utilizing these data to inform future treatment choices and improve patient care and outcomes of all
patients in the very system that generates the data is widely acknowledged. Given these key properties of the
routine-care data and the abundance of electronic healthcare databases covering millions of patients, it is critical
to strengthen the rigor of analyses of such data. Our group has previously developed an analytic approach to
reduce bias when analyzing routine-care databases, which has proven effective in more than 50 empirical
research studies across a range of topics and data sources. However, this approach currently cannot incorporate
free-text information that is recorded in electronic health records, such as clinical notes and reports. This
limitation has left a large amount of rich patient information underutilized for clinical research. We thus aim to
adapt and refine a set of established computerized natural language processing algorithms that can identify and
extract useful information from the clinical notes and reports in electronic health records and incorporate them
into our validated analytical approach for balancing background risks of different comparison groups, a key step
to ensure fair evaluation when comparing different therapeutic options. To test this newly integrated and
augmented approach, we will implement and adapt it in simulation studies where we can evaluate and improve
the performance of these new analytic methods in a controlled but realistic fashion. In addition, we will assess
the performance of our new approach in 8 practical studies comparing medical or surgical treatments that are
highly relevant to patients. To ensure highest level of data completeness and quality, we have linked multiple
healthcare utilization (claims) databases, spanning from 2007 to 2016, with 3 electronic health records systems,
including one each in Massachusetts, North Carolina, and Texas. This data will allow testing of our newly
integrated approach in a variety of care delivery systems and data environments, which will be very informative
for the application of our products in the real-world settings.
项目摘要/摘要
美国医疗保健系统的常规操作产生了大量的电子存储数据,
捕捉在受控研究环境之外的环境中提供的对患者的护理。这个
利用这些数据为未来的治疗选择提供信息并改善患者护理和ALL结果的可能性
生成数据的系统中的患者得到了广泛的认可。在给定了
常规医疗数据和覆盖数百万患者的电子医疗数据库的丰富,至关重要
加强对这类数据的严谨分析。我们小组之前已经开发了一种分析方法来
在分析常规护理数据库时减少偏见,这已在50多项经验中被证明有效
一系列主题和数据来源的研究性研究。然而,这种方法目前不能将
记录在电子健康记录中的自由文本信息,如临床记录和报告。这
局限性使得大量丰富的患者信息没有被用于临床研究。因此,我们的目标是
调整和改进一套成熟的计算机化自然语言处理算法,可以识别和
从电子健康记录中的临床记录和报告中提取有用的信息并将其合并
进入我们经过验证的分析方法,以平衡不同比较组的背景风险,这是关键的一步
以确保在比较不同的治疗方案时进行公正的评估。为了测试这个新集成的和
增强的方法,我们将在模拟研究中实施和调整它,在那里我们可以评估和改进
这些新的分析方法在可控但现实的方式下的表现。此外,我们还将评估
我们的新方法在8个实际研究中的表现,比较了内科或外科治疗
与患者高度相关。为了确保最高级别的数据完整性和质量,我们将多个
保健利用(索赔)数据库,从2007年到2016年,有3个电子健康记录系统,
包括马萨诸塞州、北卡罗来纳州和德克萨斯州各一名。这些数据将允许测试我们的新产品
在各种护理提供系统和数据环境中采用集成方法,这将是非常有用的
用于我们的产品在现实世界中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSHUA K LIN其他文献
JOSHUA K LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSHUA K LIN', 18)}}的其他基金
A targeted analytical framework to optimize posthospitalization delirium pharmacotherapy in patients with Alzheimers disease and related dementias
优化阿尔茨海默病和相关痴呆患者出院后谵妄药物治疗的有针对性的分析框架
- 批准号:
10634940 - 财政年份:2023
- 资助金额:
$ 55.4万 - 项目类别:
Deprescribing antipsychotics in patients with Alzheimers disease and related dementias and behavioral disturbance in skilled nursing facilities
在熟练护理机构中取消阿尔茨海默病及相关痴呆症和行为障碍患者的抗精神病药物处方
- 批准号:
10634934 - 财政年份:2023
- 资助金额:
$ 55.4万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10672458 - 财政年份:2022
- 资助金额:
$ 55.4万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10443345 - 财政年份:2022
- 资助金额:
$ 55.4万 - 项目类别:
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
- 批准号:
10581591 - 财政年份:2020
- 资助金额:
$ 55.4万 - 项目类别:
Developing dynamic prognostic and risk-stratification models for informing prescribing decisions in older adults with Coronavirus Disease 2019
开发动态预后和风险分层模型,为患有 2019 年冠状病毒病的老年人的处方决策提供信息
- 批准号:
10189838 - 财政年份:2019
- 资助金额:
$ 55.4万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9983157 - 财政年份:2017
- 资助金额:
$ 55.4万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9766389 - 财政年份:2017
- 资助金额:
$ 55.4万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9365420 - 财政年份:2017
- 资助金额:
$ 55.4万 - 项目类别:
相似海外基金
Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
- 批准号:
2649903 - 财政年份:2022
- 资助金额:
$ 55.4万 - 项目类别:
Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
- 批准号:
475572 - 财政年份:2022
- 资助金额:
$ 55.4万 - 项目类别:
Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10559690 - 财政年份:2022
- 资助金额:
$ 55.4万 - 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10437156 - 财政年份:2022
- 资助金额:
$ 55.4万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10277514 - 财政年份:2021
- 资助金额:
$ 55.4万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10462646 - 财政年份:2021
- 资助金额:
$ 55.4万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10631239 - 财政年份:2021
- 资助金额:
$ 55.4万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10329938 - 财政年份:2021
- 资助金额:
$ 55.4万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10405326 - 财政年份:2021
- 资助金额:
$ 55.4万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10809977 - 财政年份:2021
- 资助金额:
$ 55.4万 - 项目类别:














{{item.name}}会员




