Computational pathology to predict breast cancer risk in benign breast disease

计算病理学预测良性乳腺疾病的乳腺癌风险

基本信息

  • 批准号:
    9047258
  • 负责人:
  • 金额:
    $ 19.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-06 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Benign breast disease (BBD) is diagnosed when a woman undergoes a breast biopsy for an abnormality found through physical breast exam or screening mammogram and pathological analysis of the biopsy shows no evidence of malignancy. Approximately 80% of breast biopsies reveal a benign lesion. The identification of atypia in BBD is a well-established, strong risk factor for future breast cancer; however, the diagnosis of atypia in BBD is one of the most challenging areas of diagnostic pathology, and it has proven difficult to create standardized objective criteria for the diagnosis of atypical lesion in BBD. Lobular involution has recently been shown to be significantly associated with breast cancer risk; however, there are currently no clinically available tools to quantitate lobular involution, and consequently, this feature is not currently incorporated into pathology reports. Stromal characteristics are known to play a crucial role in all stages of breast carcinogenesis; however, the association of quantitative stromal characteristics and breast cancer risk has never been evaluated. In this two year project, we will extend our previous work based in invasive cancer to develop a computational pathology program for the quantitative assessment of both established and novel morphological features in normal breast and benign breast disease lesions (Aim 1). To achieve this aim, we will use the Nurses' Health Study (NHS) Incident BBD cohort, which contains histological slides from a total of 1758 NHS participants with BBD. All cases have been previously reviewed and annotated by expert breast pathologists. These annotations will be used extensively in both the design and evaluation of the computational pathology platform. In Aim 2 of our study, we will examine associations between computational pathology (C- Path) features with future breast cancer risk. To achieve this aim, we will use the NHS BBD Breast Cancer Nested Case Control cohort, which consists of 613 women with BBD who went on to develop breast cancer matched to 2407 women who did not. Using this unique cohort, we will perform analyses to determine the association of established and novel C-Path derived morphological features with cancer risk and to determine the added value of utilizing C-Path to predict future cancer risk. The overriding goal of our project is to develop a new computational system for the objective, quantitative assessment of both established and novel morphologic characteristics of breast tissue in women with BBD. We aim to use this system to gain biological insight into morphologic factors associated with breast cancer risk and to improve the performance of breast cancer risk prediction models. If successful, our project will result in the development of a clinically applicable tool that will provide objective quantitative assessments of histopathological features in nonmalignant breast tissue to inform breast cancer risk prediction models and to guide clinical decisions. This development could represent a paradigm shift in how normal breast and benign breast disease pathology is measured and used in both clinical practice and translational breast cancer research.
 描述(申请人提供):良性乳腺疾病(BBD)是指女性接受乳房活检,发现乳房体格检查或筛查乳房X光检查发现异常,但病理分析显示没有恶性病变的证据。大约80%的乳腺活检显示为良性病变。BBD中异型性的识别是一个公认的、未来乳腺癌的强烈危险因素;然而,BBD中异型性的诊断是诊断病理学中最具挑战性的领域之一,并且已经被证明很难为BBD中不典型病变的诊断建立标准化的客观标准。小叶退缩最近被证明与乳腺癌的风险显著相关;然而,目前临床上还没有可用的工具来量化小叶退缩,因此,这一特征目前没有被纳入病理报告。已知间质特征在乳腺癌发生的所有阶段都起着关键作用;然而,定量间质特征与乳腺癌风险之间的关系从未被评估过。在这个为期两年的项目中,我们将扩展我们以前在浸润性癌症方面的工作,开发一个计算病理学程序,用于定量评估正常乳腺和良性乳腺疾病病变的既有和新的形态特征(目标1)。为了实现这一目标,我们将使用护士健康研究(NHS)事件BBD队列,其中包含总共1758名患有BBD的NHS参与者的组织学切片。所有病例以前都经过专家乳腺病理学家的审查和注释。这些注释将在计算病理学平台的设计和评估中广泛使用。在我们研究的目标2中,我们将检查计算病理学(C-Path)特征与未来乳腺癌风险之间的关系。为了实现这一目标,我们将使用NHS BBD乳腺癌嵌套病例对照队列,该队列包括613名患有BBD的女性和2407名未患乳腺癌的女性。利用这一独特的队列,我们将进行分析,以确定已建立的和新的C路径派生的形态特征与癌症风险的关联,并确定利用C路径预测未来癌症风险的附加值。我们项目的首要目标是开发一种新的计算系统,用于客观、定量地评估患有BBD的女性乳房组织的既有和新的形态特征。我们的目标是使用这个系统来获得与乳腺癌风险相关的形态因素的生物学洞察力,并改进乳腺癌风险预测模型的性能。如果成功,我们的项目将导致开发一种临床适用的工具,该工具将为非恶性乳腺组织的组织病理学特征提供客观的定量评估,为乳腺癌风险预测模型提供信息,并指导临床决策。这一进展可能代表着在临床实践和转化性乳腺癌研究中衡量和使用正常乳腺和良性乳腺疾病病理的方式发生了范式转变。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated Classification of Benign and Malignant Proliferative Breast Lesions.
良性和恶性增殖性乳腺病变的自动分类。
  • DOI:
    10.1038/s41598-017-10324-y
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Radiya-Dixit,Evani;Zhu,David;Beck,AndrewH
  • 通讯作者:
    Beck,AndrewH
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rulla M Tamimi其他文献

Gene × Gene interaction between MnSOD and GPX-1 and breast cancer risk: a nested case-control study
  • DOI:
    10.1186/1471-2407-6-217
  • 发表时间:
    2006-08-31
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    David G Cox;Rulla M Tamimi;David J Hunter
  • 通讯作者:
    David J Hunter

Rulla M Tamimi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rulla M Tamimi', 18)}}的其他基金

Stromal contributions to breast carcinogenesis
基质对乳腺癌发生的贡献
  • 批准号:
    10748124
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10661345
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
Prediagnostic exposures, germline genetics, and triple negative breast cancer mutational and immune profiles
诊断前暴露、种系遗传学以及三阴性乳腺癌突变和免疫特征
  • 批准号:
    10596120
  • 财政年份:
    2021
  • 资助金额:
    $ 19.14万
  • 项目类别:
Mammographic density and texture features in relation to breast cancer risk
乳房X线照相密度和纹理特征与乳腺癌风险相关
  • 批准号:
    8896563
  • 财政年份:
    2013
  • 资助金额:
    $ 19.14万
  • 项目类别:
Mammographic density and texture features in relation to breast cancer risk
乳腺X线密度和纹理特征与乳腺癌风险的关系
  • 批准号:
    8741957
  • 财政年份:
    2013
  • 资助金额:
    $ 19.14万
  • 项目类别:
Mammographic density and texture features in relation to breast cancer risk
乳腺X线密度和纹理特征与乳腺癌风险的关系
  • 批准号:
    8629862
  • 财政年份:
    2013
  • 资助金额:
    $ 19.14万
  • 项目类别:
Whole Genome Association Study of Mammographic Density
乳腺X线密度的全基因组关联研究
  • 批准号:
    8018197
  • 财政年份:
    2009
  • 资助金额:
    $ 19.14万
  • 项目类别:
Whole Genome Association Study of Mammographic Density
乳腺X线密度的全基因组关联研究
  • 批准号:
    7656493
  • 财政年份:
    2009
  • 资助金额:
    $ 19.14万
  • 项目类别:
Whole Genome Association Study of Mammographic Density
乳腺X线密度的全基因组关联研究
  • 批准号:
    7777342
  • 财政年份:
    2009
  • 资助金额:
    $ 19.14万
  • 项目类别:
Whole Genome Association Study of Mammographic Density
乳腺X线密度的全基因组关联研究
  • 批准号:
    8239989
  • 财政年份:
    2009
  • 资助金额:
    $ 19.14万
  • 项目类别:

相似海外基金

The potential of using student-conducted ethnographic research as a formative assessment tool in CLIL and EMI courses
在 CLIL 和 EMI 课程中使用学生进行的民族志研究作为形成性评估工具的潜力
  • 批准号:
    24K04145
  • 财政年份:
    2024
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I-Corps: Remote monitoring and assessment tool for spinal care patients
I-Corps:脊柱护理患者的远程监测和评估工具
  • 批准号:
    2321802
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Standard Grant
SBIR Phase I: PenEEG: An Objective Assessment Tool for Concussion and Recovery Management
SBIR 第一阶段:PenEEG:脑震荡和恢复管理的客观评估工具
  • 批准号:
    2304353
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Standard Grant
Developing a new risk and needs assessment tool for young people who have displayed harmful sexual behaviour
为表现出有害性行为的年轻人开发新的风险和需求评估工具
  • 批准号:
    2886506
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Studentship
Development of the Dementia-Friendly Environmental Assessment Tool for Japanese care and nursing homes
为日本护理院和疗养院开发痴呆症友好型环境评估工具
  • 批准号:
    22KJ0474
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
  • 批准号:
    10721762
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
I-Corps: Sensor-based frailty assessment tool using a smart watch
I-Corps:使用智能手表的基于传感器的虚弱评估工具
  • 批准号:
    2311611
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Standard Grant
Injury prevention for rugby-related concussion: development of a comprehensive tackle assessment tool
橄榄球相关脑震荡的伤害预防:开发综合铲球评估工具
  • 批准号:
    23K16737
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a diagnostic assessment tool and training app for dyscaliculia to apply in medical treatment and education.
开发计算障碍诊断评估工具和培训应用程序,以应用于医疗和教育。
  • 批准号:
    23K02570
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clinical Grip Training and Assessment Tool for Rheumatoid Arthritis
类风湿关节炎的临床握力训练和评估工具
  • 批准号:
    10050499
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了