Elucidating the evolution of Coxiella to uncover critical metabolic pathways
阐明柯克斯体的进化以揭示关键的代谢途径
基本信息
- 批准号:9302016
- 负责人:
- 金额:$ 44.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-10 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:ArgasidaeBacteriaBiological AssayBiologyCationsCellsChronicCoxiellaCoxiella burnetiiCritical PathwaysDataDevelopmentDisease OutbreaksDoxycyclineEndocarditisEnvironmentEpidemicEtiologyEvolutionFrancisellaGenesGeneticGenomeGenomic approachGoalsGoatGrowthHemeHorizontal Gene TransferHumanHydrolaseHydroxychloroquineInfectionKnowledgeLibrariesLysosomesMetabolicMetabolic PathwayMetabolismModelingMolecularNetherlandsOrnithodorosOutcomePathogenesisPathogenicityPathway interactionsPeptidesPharmacologyPhylogenetic AnalysisPhysiologyProductionProteinsPublic HealthQ FeverReactive Oxygen SpeciesRecording of previous eventsResearchRickettsiaRickettsialesTestingTherapeutic AgentsTicksVacuoleVirulenceVirulentWorkZoonosesbasecombinatorialcomparativefitnessgenome analysisgenome-wideheme biosynthesisimprovedinnovationinsightnew therapeutic targetnovelnovel strategiesnovel therapeuticspathogenpreventresistant straintooltranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
Coxiella burnetii's pathogenicity depends on its ability to grow in a lysosome-derived hostile vacuole within
human cells. However, metabolic processes critical to C. burnetii's intracellular growth are largely unknown.
This lack of knowledge has prevented both the understanding of its basic biology and pathogenesis, and the
development of better therapeutic agents. The long-term goal is to understand the molecular details of Coxiella's distinctive physiology, and to apply this knowledge to developing novel therapeutic strategies. The objective of this application is to identify metabolic pathways that are vital to C. burnetii's intracellular growth. The
central hypothesis, which was formulated based on preliminary data, is that C. burnetii evolved from a tick-
associated ancestor by acquiring critical metabolic genes through horizontal gene transfer (HGT). A novel evolutionary genomics approach will be used to identify metabolic pathways that are critical to C. burnetii's intra-
cellular growth. The rationale for the proposed research is that once metabolic processes important to C. burnetii's intracellular growth are identified, pharmacological agents that block these pathways could be developed
to treat chronic infections more effectively. The objective of this project will be accomplished by three specific
aims: (1) Identify metabolic pathways that distinguish C. burnetii from tick-associated Coxiella. The working
hypothesis is that genes critical to C. burnetii's intracellular physiology will not be present in avirulent tick-
associated Coxiella. The genome of a closely related Coxiella from the tick Ornithodoros rostratus will be sequenced and compared to C. burnetii's genome. (2) Define metabolic pathways that are critical to C. burnetii's
intracellular growth. The working hypothesis is that genes acquired via HGT are being maintained in C. burnetii because they are critical to the pathogen's physiology. Phylogenetic approaches will be used to identify
HGT-derived genes, and their functions will be validated using RNA-seq and genetic tools. (3) As a proof of
principle, determine the importance of heme biosynthesis to C. burnetii's intracellular growth. The working
hypothesis is that heme biosynthesis is crucial to Coxiella's growth. Heme production and intracellular growth
of heme pathway-deficient strains will be assayed. This study is innovative because it (a) uses a novel approach
that overcomes the current limitations in studying Coxiella at a genome-wide scale, and (b) is based on a novel
concept that the human pathogen evolved from a tick symbiont via massive HGT. The proposed project is significant because it will (a) uncover metabolic pathways that are critical to the pathogen's intracellular growth,
(b) identify new therapeutic targets, for example, HemA and HemL are essential for heme biosynthesis in C.
burnetii but are not present in humans cells, (c) provide a model approach for identifying genes involved in
host adaptation, which could be applied broadly to other pathogens such as Francisella and Rickettsia spp.
where avirulent tick symbionts could be compared to virulent human-specialized strains.
项目总结/摘要
贝氏柯克斯体的致病性取决于其在宿主细胞内溶酶体来源的敌对空泡中生长的能力。
人类细胞。然而,代谢过程的关键C。伯内特氏菌细胞内生长在很大程度上是未知的。
这种知识的缺乏阻碍了对其基本生物学和发病机制的理解,
开发更好的治疗药物。长期目标是了解Coxiella独特生理学的分子细节,并将这些知识应用于开发新的治疗策略。本申请的目的是确定代谢途径,是至关重要的C。Burnetii的细胞内生长。的
根据初步数据提出的中心假设是C.贝氏体是从蜱虫进化而来的
通过水平基因转移(HGT)获得关键代谢基因,从而与相关的祖先相关联。一种新的进化基因组学方法将被用来确定代谢途径是至关重要的C。贝氏内
细胞生长这项研究的基本原理是,一旦代谢过程对C。伯内特氏菌的细胞内生长被鉴定,阻断这些途径的药理学试剂可以被开发出来
更有效地治疗慢性感染。该项目的目标将通过三个具体的
目的:(1)确定C.贝氏体与蜱相关柯克斯体的区别工作
假设是C.贝氏体的细胞内生理学不会出现在无毒的蜱虫中,
相关Coxiella来自喙鸟蜱的一种密切相关的柯克斯体的基因组将被测序,并与C。Burnetii的基因组(2)定义代谢途径是至关重要的C。伯内特氏
细胞内生长工作假设是通过HGT获得的基因在C.因为它们对病原体的生理至关重要。系统发育方法将用于识别
HGT衍生基因及其功能将使用RNA-seq和遗传工具进行验证。(3)作为服务的证明
原理,确定了血红素生物合成对C. Burnetii的细胞内生长。工作
假设血红素的生物合成对柯克斯体的生长至关重要。血红素生成和细胞内生长
将测定血红素途径缺陷菌株的含量。这项研究是创新的,因为它(a)使用了一种新的方法
克服了目前在全基因组范围内研究柯克斯体的局限性,以及(B)基于一种新的
人类病原体通过大规模HGT从蜱虫共生体进化而来的概念。拟议的项目意义重大,因为它将(a)揭示对病原体细胞内生长至关重要的代谢途径,
(b)确定新的治疗靶点,例如,HemA和HemL对于C.
Burnetii,但不存在于人类细胞中,(c)提供了一种用于鉴定参与
宿主适应,这可以广泛应用于其他病原体,如弗朗西斯和立克次体属。
其中无毒的蜱共生体可以与有毒的人类特异性菌株进行比较。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complete Mitochondrial Genome Sequence of the Gulf Coast Tick (Amblyomma maculatum).
- DOI:10.1128/mra.00431-21
- 发表时间:2021-09-23
- 期刊:
- 影响因子:0.8
- 作者:Brenner AE;Raghavan R
- 通讯作者:Raghavan R
Identification of novel MITEs (miniature inverted-repeat transposable elements) in Coxiella burnetii: implications for protein and small RNA evolution.
- DOI:10.1186/s12864-018-4608-y
- 发表时间:2018-04-11
- 期刊:
- 影响因子:4.4
- 作者:Wachter S;Raghavan R;Wachter J;Minnick MF
- 通讯作者:Minnick MF
Origin, Evolution, and Loss of Bacterial Small RNAs.
- DOI:10.1128/microbiolspec.rwr-0004-2017
- 发表时间:2018-04
- 期刊:
- 影响因子:3.7
- 作者:Dutcher HA;Raghavan R
- 通讯作者:Raghavan R
Coxiella burnetii and Related Tick Endosymbionts Evolved from Pathogenic Ancestors.
- DOI:10.1093/gbe/evab108
- 发表时间:2021-07-06
- 期刊:
- 影响因子:3.3
- 作者:Brenner AE;Muñoz-Leal S;Sachan M;Labruna MB;Raghavan R
- 通讯作者:Raghavan R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rahul Raghavan其他文献
Rahul Raghavan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rahul Raghavan', 18)}}的其他基金
Uncovering small RNAs that contribute to Coxiella burnetii infection
发现导致伯内氏柯克斯体感染的小 RNA
- 批准号:
9529169 - 财政年份:2018
- 资助金额:
$ 44.55万 - 项目类别:
MicroRNA mediated inhibition of apoptosis in Coxiella burnetii infection
MicroRNA介导的伯内氏柯克斯体感染细胞凋亡抑制
- 批准号:
9243896 - 财政年份:2017
- 资助金额:
$ 44.55万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Continuing Grant














{{item.name}}会员




