MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
基本信息
- 批准号:9329385
- 负责人:
- 金额:$ 20.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-09 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:BiologicalCancer PrognosisClinicalColon CarcinomaColorectal CancerComplexDataData SetDevelopmentDiagnosisDiseaseEthnic OriginFoundationsFreezingGenderGene Expression ProfileGene Expression RegulationGenesGenetic TranscriptionGenomicsGlioblastomaHeterogeneityInvestigationKnowledgeLiteratureMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of ovaryMediatingMessenger RNAMeta-AnalysisMicroRNAsModelingMolecular ProfilingNational Human Genome Research InstituteNormal tissue morphologyOncogenesOutputPathogenesisPathway AnalysisPatientsPilot ProjectsPreventionProceduresPropertyPublishingRegulationRegulator GenesReportingRoleSamplingSeedsStatistical MethodsSystemThe Cancer Genome AtlasTherapeuticTimeTissuesTumor Suppressor ProteinsValidationcancer biomarkerscancer cellcancer diagnosiscancer subtypescancer typecell typecohortcomputer frameworkestablished cell lineevidence baseexperimental studygenome-wideinnovationinsightnoveloutcome forecastpublic health relevancesuccesstherapeutic targettooltranscription factortranscriptometranscriptomicstreatment responsetreatment strategytumortumorigenesis
项目摘要
DESCRIPTION (provided by applicant): Recent studies have implicated the critical roles of microRNAs (miRNAs) in the pathogenesis of cancer, suggesting that miRNAs can be clinically useful as biomarkers for cancer prognosis, diagnosis and treatment. To date, the miRNA information in cancer studies has varied greatly due to data heterogeneity and disease complexity. In this application, in Aim 1, we will develop novel statistical methods to systematically perform meta- analysis of miRNA expression in the first four cancers (glioblastoma, ovarian cancer, colorectal cancer, and lung cancer) reported by The Cancer Genome Atlas (TCGA) project. For each of these cancers, more than 300 dysregulated miRNAs have been reported, which makes this aim not only feasible but immediately needed. In Aim 2, we will develop innovative strategies to explore miRNAs' functions in cancer through miRNA and transcription factor (TF) co-regulatory network analysis. For each cancer, we will build cancer-specific regulatory networks using miRNA/mRNA co-expression profiling and TF/gene regulation derived from the corresponding TCGA dataset. We will then identify network modules that reflect miRNA and TF co-regulation in cancer. We will investigate both common regulatory modules among four types of cancer and unique modules for each specific cancer. In Aim 3, we will experimentally validate selected miRNAs and their targets in common regulatory modules from Aim 2 using already available tissue and matched normal samples as well as established cell lines. This application will be the first systematic investigation of all available miRNA studes in the first four TCGA cancers. The successful completion of Aim 1 will provide us with a list of evidence-based miRNAs in glioblastoma, ovarian cancer, colorectal cancer, and lung cancer; the successful completion of Aim 2 will provide us with a comprehensive exploration of miRNA and TF co-regulation at the regulatory network level in these cancers; the successful completion of Aim 3 will validate our meta- and network- approaches, help us understand the miRNA regulatory mechanisms, and provide us with potential therapeutic targets in these cancers. Although quite exploratory, we expect this project is highly feasible and timely due to the large amount of data available in literature and from TCGA. This pioneering effort to detect functionally important miRNAs in complex diseases will greatly enhance our understanding of the regulatory systems in cancer, which will likely lead to the development of effective prevention, diagnosis, and treatment strategies.
描述(由申请人提供):最近的研究表明 microRNA (miRNA) 在癌症发病机制中的关键作用,表明 miRNA 在临床上可用作癌症预后、诊断和治疗的生物标志物。迄今为止,由于数据异质性和疾病复杂性,癌症研究中的 miRNA 信息差异很大。在本应用的目标 1 中,我们将开发新的统计方法,系统地对癌症基因组图谱 (TCGA) 项目报告的前四种癌症(胶质母细胞瘤、卵巢癌、结直肠癌和肺癌)中的 miRNA 表达进行荟萃分析。对于这些癌症中的每一种,已经报道了超过 300 个失调的 miRNA,这使得这一目标不仅可行,而且是迫切需要的。在目标 2 中,我们将制定创新策略,通过 miRNA 和转录因子 (TF) 共调控网络分析来探索 miRNA 在癌症中的功能。对于每种癌症,我们将使用源自相应 TCGA 数据集的 miRNA/mRNA 共表达谱和 TF/基因调控来构建癌症特异性调控网络。然后我们将确定反映癌症中 miRNA 和 TF 共同调节的网络模块。我们将研究四种癌症的常见调节模块和每种特定癌症的独特模块。在目标 3 中,我们将使用现有组织和匹配的正常样本以及已建立的细胞系,通过实验验证目标 2 中常见调控模块中选定的 miRNA 及其靶标。该应用将是对前四种 TCGA 癌症中所有可用 miRNA 研究的首次系统研究。目标1的成功完成将为我们提供胶质母细胞瘤、卵巢癌、结直肠癌和肺癌中基于证据的miRNA列表; Aim 2的成功完成将为我们在这些癌症的调控网络水平上全面探索miRNA和TF的共同调控; Aim 3 的成功完成将验证我们的元方法和网络方法,帮助我们了解 miRNA 调控机制,并为我们提供这些癌症的潜在治疗靶点。尽管颇具探索性,但由于文献和 TCGA 提供了大量数据,我们预计该项目具有高度可行性和及时性。这项在复杂疾病中检测功能重要的 miRNA 的开创性努力将极大地增强我们对癌症调节系统的理解,这可能会导致有效预防、诊断和治疗策略的发展。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating MicroRNA and transcription factor co-regulatory networks in colorectal cancer.
研究结直肠癌中的 MicroRNA 和转录因子共调控网络
- DOI:10.1186/s12859-017-1796-4
- 发表时间:2017-09-02
- 期刊:
- 影响因子:3
- 作者:Wang H;Luo J;Liu C;Niu H;Wang J;Liu Q;Zhao Z;Xu H;Ding Y;Sun J;Zhang Q
- 通讯作者:Zhang Q
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongming Zhao其他文献
Zhongming Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongming Zhao', 18)}}的其他基金
Constructing A Transcriptomic Atlas of Retrotransposon in Alzheimer's Disease
构建阿尔茨海默病逆转录转座子转录组图谱
- 批准号:
10431366 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Deep learning methods to predict the function of genetic variants in orofacial clefts
深度学习方法预测口颌裂遗传变异的功能
- 批准号:
9764346 - 财政年份:2018
- 资助金额:
$ 20.1万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10318084 - 财政年份:2017
- 资助金额:
$ 20.1万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10640868 - 财政年份:2017
- 资助金额:
$ 20.1万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9980998 - 财政年份:2017
- 资助金额:
$ 20.1万 - 项目类别:
Transforming dbGaP genetic and genomic data to FAIR-ready by artificial intelligence and machine learning algorithms
通过人工智能和机器学习算法将 dbGaP 遗传和基因组数据转变为 FAIR-ready
- 批准号:
10842954 - 财政年份:2017
- 资助金额:
$ 20.1万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10449376 - 财政年份:2017
- 资助金额:
$ 20.1万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9750105 - 财政年份:2017
- 资助金额:
$ 20.1万 - 项目类别:
Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS
通过 RNA-seq 和 GWAS 绘制复杂疾病的遗传结构
- 批准号:
9212507 - 财政年份:2016
- 资助金额:
$ 20.1万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9093087 - 财政年份:2016
- 资助金额:
$ 20.1万 - 项目类别:
相似海外基金
Histopathology image analysis for prostate cancer prognosis after radical prostatectomy
前列腺癌根治术后预后的组织病理学图像分析
- 批准号:
478494 - 财政年份:2023
- 资助金额:
$ 20.1万 - 项目类别:
Operating Grants
Time-varying relationships between built environment factors, colon and rectum cancer prognosis, and survival
建筑环境因素、结肠癌和直肠癌预后以及生存之间的时变关系
- 批准号:
10446659 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Early Evaluation of Ovarian Cancer Prognosis by Fusing Radiographic and Histopathologic Imaging Information
通过融合放射学和组织病理学成像信息对卵巢癌预后进行早期评估
- 批准号:
10573293 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Time-varying relationships between built environment factors, colon and rectum cancer prognosis, and survival
建筑环境因素、结肠癌和直肠癌预后以及生存之间的时变关系
- 批准号:
10616593 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Early Evaluation of Ovarian Cancer Prognosis by Fusing Radiographic and Histopathologic Imaging Information
通过融合放射学和组织病理学成像信息对卵巢癌预后进行早期评估
- 批准号:
10334987 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Measuring Cancer Prognosis with Self-Supervised Learning
通过自我监督学习衡量癌症预后
- 批准号:
2766128 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Studentship
Energy Balance, mTOR pathway signaling, and breast cancer prognosis
能量平衡、mTOR 通路信号传导和乳腺癌预后
- 批准号:
10337317 - 财政年份:2021
- 资助金额:
$ 20.1万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10249738 - 财政年份:2021
- 资助金额:
$ 20.1万 - 项目类别:
Energy Balance, mTOR pathway signaling, and breast cancer prognosis
能量平衡、mTOR 通路信号传导和乳腺癌预后
- 批准号:
10619284 - 财政年份:2021
- 资助金额:
$ 20.1万 - 项目类别:
Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors and lung cancer prognosis
钠-葡萄糖协同转运蛋白 2 (SGLT2) 抑制剂与肺癌预后
- 批准号:
10318209 - 财政年份:2021
- 资助金额:
$ 20.1万 - 项目类别:














{{item.name}}会员




