Constructing A Transcriptomic Atlas of Retrotransposon in Alzheimer's Disease

构建阿尔茨海默病逆转录转座子转录组图谱

基本信息

项目摘要

Project Summary The number of AD patients is gradually increasing every year, and the economic burden of health care of AD patients, estimated at $335 billion in 2021, is predicted to triple by 2050. In the interest of public health and the economy, understanding AD genetics and finding effective AD prevention and treatment are important. Numerous studies have suggested that AD is a complicated genetic disorder, often involving genomic structural changes and regulation. Thus, there is a strong need to investigate not only regular genes, proteins, and their regulations but also the other genetic components in AD. Retrotransposons (RTEs) are DNA sequences that copy themselves and insert their copies into the genome. There has been some interest in studying retrotransposons in AD research. For example, it is known that chromatin relaxation mediated by Tau protein accumulation may overly activate the retrotransposons. This massive activation may provoke an innate immune response and damage the genome, which can result in neurodegeneration. Moreover, a study showed that antiviral drugs could suppress activation of RTEs in AD by inhibiting their reverse transcriptase, and the suppression results in the prevention of neurodegeneration. These studies suggested that investigating the features and roles of retrotransposons in AD will provide an additional and important way to understand the regulations of RTEs in AD pathogenesis. However, molecular characteristics of the RTEs in AD, such as cell type-/sex-specificity, are still unknown. Characterizing RTEs requires generating large-scale RTE expression datasets. Such data has not been available publicly, although the AD research community has made tremendous efforts to generate large-scale postmortem AD transcriptome data, including bulk RNA-seq of ~2,000 subjects and single-cell nuclei RNA-seq of ~260,000 cells. Therefore, we propose two specific aims to perform the first systematic study of RTE by constructing an RTE atlas resource for AD study: Aim 1. To generate large-scale RTE expression datasets by mining and processing public AD transcriptome datasets. We will extend our SalmonTE algorithm to mine RTE expressions from AD transcriptome datasets at both tissue-level and single- cell resolution. Aim 2. To generate AD RTE atlas resources by characterizing RTEs and AD patients using statistical and machine learning methods. We will expand our in-house computational methods to calculate context-specificity (e.g., brain region, cell type, and sex) of each RTE in human AD brains. We will also develop an unsupervised graph neural network using RTE expression and multi-omics data to characterize AD patients. In the end, we will create an atlas website to share our findings with the AD research community. Successful completion of this project will provide 1) novel computational methods to rigorously characterize RTEs in AD, 2) identification of context-specific RTEs in AD and characterization of AD patients using RTE expression, and 3) a well-annotated AD RTE atlas to deepen our knowledge in the molecular basis of AD.
项目概要 AD患者数量逐年增加,AD患者的经济负担 AD 患者的医疗保健费用预计到 2021 年将达到 3,350 亿美元,预计到 2050 年将增加两倍。为了公众利益 健康和经济、了解 AD 遗传学并找到有效的 AD 预防和治疗是 重要的。大量研究表明 AD 是一种复杂的遗传性疾病,通常涉及基因组 结构变化和监管。因此,不仅迫切需要研究常规基因、蛋白质, 及其调控,以及 AD 中的其他遗传成分。逆转录转座子 (RTE) 是 DNA 自我复制并将其副本插入基因组的序列。有人对此感兴趣 研究 AD 研究中的逆转录转座子。例如,已知 Tau 介导的染色质松弛 蛋白质积累可能会过度激活逆转录转座子。这种大规模的激活可能会激发一种与生俱来的 免疫反应并损害基因组,这可能导致神经退行性变。此外,一项研究表明 抗病毒药物可以通过抑制逆转录酶来抑制 AD 中 RTE 的激活,并且 抑制可预防神经变性。这些研究表明,调查 逆转录转座子在 AD 中的特征和作用将为理解 AD 提供一种额外且重要的方法 RTE 在 AD 发病机制中的调节。然而,AD 中 RTE 的分子特征,例如细胞 类型/性别特异性仍然未知。表征 RTE 需要生成大规模 RTE 表达式 数据集。尽管 AD 研究界已经取得了巨大的成果,但此类数据尚未公开。 努力生成大规模死后 AD 转录组数据,包括约 2,000 名受试者的大量 RNA 测序数据 以及约 260,000 个细胞的单细胞核 RNA-seq。因此,我们提出两个具体目标来实现第一个目标 通过构建用于 AD 研究的 RTE 图集资源来系统地研究 RTE:目标 1. 生成大规模 通过挖掘和处理公共 AD 转录组数据集来获得 RTE 表达数据集。我们将延长我们的 SalmonTE 算法从组织水平和单水平的 AD 转录组数据集中挖掘 RTE 表达 细胞分辨率。目标 2. 通过使用 RTE 和 AD 患者的特征来生成 AD RTE 图集资源 统计和机器学习方法。我们将扩展我们的内部计算方法来计算 人类 AD 大脑中每个 RTE 的上下文特异性(例如,大脑区域、细胞类型和性别)。我们还将开发 使用 RTE 表达和多组学数据来表征 AD 患者的无监督图神经网络。 最后,我们将创建一个图集网站,与 AD 研究界分享我们的发现。成功的 该项目的完成将提供 1) 新颖的计算方法来严格表征 AD 中的 RTE,2) 识别 AD 中特定背景的 RTE 并使用 RTE 表达来表征 AD 患者,以及 3) 注释完善的 AD RTE 图集,以加深我们对 AD 分子基础的了解。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhongming Zhao其他文献

Zhongming Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhongming Zhao', 18)}}的其他基金

Deep learning methods to predict the function of genetic variants in orofacial clefts
深度学习方法预测口颌裂遗传变异的功能
  • 批准号:
    9764346
  • 财政年份:
    2018
  • 资助金额:
    $ 31.2万
  • 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
  • 批准号:
    10318084
  • 财政年份:
    2017
  • 资助金额:
    $ 31.2万
  • 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
  • 批准号:
    10640868
  • 财政年份:
    2017
  • 资助金额:
    $ 31.2万
  • 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
  • 批准号:
    9980998
  • 财政年份:
    2017
  • 资助金额:
    $ 31.2万
  • 项目类别:
Transforming dbGaP genetic and genomic data to FAIR-ready by artificial intelligence and machine learning algorithms
通过人工智能和机器学习算法将 dbGaP 遗传和基因组数据转变为 FAIR-ready
  • 批准号:
    10842954
  • 财政年份:
    2017
  • 资助金额:
    $ 31.2万
  • 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
  • 批准号:
    10449376
  • 财政年份:
    2017
  • 资助金额:
    $ 31.2万
  • 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
  • 批准号:
    9750105
  • 财政年份:
    2017
  • 资助金额:
    $ 31.2万
  • 项目类别:
Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS
通过 RNA-seq 和 GWAS 绘制复杂疾病的遗传结构
  • 批准号:
    9212507
  • 财政年份:
    2016
  • 资助金额:
    $ 31.2万
  • 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
  • 批准号:
    9329385
  • 财政年份:
    2016
  • 资助金额:
    $ 31.2万
  • 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
  • 批准号:
    9093087
  • 财政年份:
    2016
  • 资助金额:
    $ 31.2万
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
  • 批准号:
    23K20355
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
  • 批准号:
    23K24782
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了