Constructing A Transcriptomic Atlas of Retrotransposon in Alzheimer's Disease
构建阿尔茨海默病逆转录转座子转录组图谱
基本信息
- 批准号:10431366
- 负责人:
- 金额:$ 31.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AducanumabAgingAlgorithmsAlzheimer disease preventionAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease patientAntiviral AgentsArchivesAtlasesAutopsyBenchmarkingBrainBrain regionCell NucleusCellsCharacteristicsChromatinClinicalClinical TrialsCommunitiesComputing MethodologiesDNADNA MethylationDNA SequenceDataData SetDatabasesDiseaseDrosophila genusEconomic BurdenElementsEndogenous RetrovirusesEpigenetic ProcessGene ExpressionGene ProteinsGenetic DiseasesGenetic TranscriptionGenomeGenomicsHealthcareHumanHuman GenomeInnate Immune ResponseInvestigationKnowledgeMediatingMedical centerMemoryMethodsMethylationMicroRNAsMiningMolecularMultiomic DataNerve DegenerationNeurodegenerative DisordersNuclearOther GeneticsOutcomePathogenesisPathogenicityPathologic ProcessesPatientsPharmacotherapyPlayPreventionProteinsPublic HealthPublishingRNA-Directed DNA PolymeraseRegulationRelaxationRepressionResearchResearch PersonnelResolutionResourcesRetrotransposonReverse TranscriptionRoleSignal PathwaySmall Nuclear RNASpecificityTimeTissue SampleTissuesTranscriptUnited StatesUpdateVisualizationbasebrain tissuecell typecomplex datadata resourcedesigndrug efficacyefficacy evaluationepigenetic silencingepigenomeepigenomicsexpectationexperiencegraph neural networkhistone modificationhuman diseaseimprovedinhibitorinnovationinterestmachine learning methodnovelreligious order studysexstatistical and machine learningtau Proteinstau aggregationtooltraittranscriptometranscriptome sequencingtranscriptomicstransposon/insertion elementtreatment researchuser-friendlyweb portalweb site
项目摘要
Project Summary The number of AD patients is gradually increasing every year, and the economic burden of
health care of AD patients, estimated at $335 billion in 2021, is predicted to triple by 2050. In the interest of public
health and the economy, understanding AD genetics and finding effective AD prevention and treatment are
important. Numerous studies have suggested that AD is a complicated genetic disorder, often involving genomic
structural changes and regulation. Thus, there is a strong need to investigate not only regular genes, proteins,
and their regulations but also the other genetic components in AD. Retrotransposons (RTEs) are DNA
sequences that copy themselves and insert their copies into the genome. There has been some interest in
studying retrotransposons in AD research. For example, it is known that chromatin relaxation mediated by Tau
protein accumulation may overly activate the retrotransposons. This massive activation may provoke an innate
immune response and damage the genome, which can result in neurodegeneration. Moreover, a study showed
that antiviral drugs could suppress activation of RTEs in AD by inhibiting their reverse transcriptase, and the
suppression results in the prevention of neurodegeneration. These studies suggested that investigating the
features and roles of retrotransposons in AD will provide an additional and important way to understand the
regulations of RTEs in AD pathogenesis. However, molecular characteristics of the RTEs in AD, such as cell
type-/sex-specificity, are still unknown. Characterizing RTEs requires generating large-scale RTE expression
datasets. Such data has not been available publicly, although the AD research community has made tremendous
efforts to generate large-scale postmortem AD transcriptome data, including bulk RNA-seq of ~2,000 subjects
and single-cell nuclei RNA-seq of ~260,000 cells. Therefore, we propose two specific aims to perform the first
systematic study of RTE by constructing an RTE atlas resource for AD study: Aim 1. To generate large-scale
RTE expression datasets by mining and processing public AD transcriptome datasets. We will extend our
SalmonTE algorithm to mine RTE expressions from AD transcriptome datasets at both tissue-level and single-
cell resolution. Aim 2. To generate AD RTE atlas resources by characterizing RTEs and AD patients using
statistical and machine learning methods. We will expand our in-house computational methods to calculate
context-specificity (e.g., brain region, cell type, and sex) of each RTE in human AD brains. We will also develop
an unsupervised graph neural network using RTE expression and multi-omics data to characterize AD patients.
In the end, we will create an atlas website to share our findings with the AD research community. Successful
completion of this project will provide 1) novel computational methods to rigorously characterize RTEs in AD, 2)
identification of context-specific RTEs in AD and characterization of AD patients using RTE expression, and 3)
a well-annotated AD RTE atlas to deepen our knowledge in the molecular basis of AD.
AD患者的数量每年都在逐渐增加,经济负担越来越重
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongming Zhao其他文献
Zhongming Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongming Zhao', 18)}}的其他基金
Deep learning methods to predict the function of genetic variants in orofacial clefts
深度学习方法预测口颌裂遗传变异的功能
- 批准号:
9764346 - 财政年份:2018
- 资助金额:
$ 31.2万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10318084 - 财政年份:2017
- 资助金额:
$ 31.2万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10640868 - 财政年份:2017
- 资助金额:
$ 31.2万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9980998 - 财政年份:2017
- 资助金额:
$ 31.2万 - 项目类别:
Transforming dbGaP genetic and genomic data to FAIR-ready by artificial intelligence and machine learning algorithms
通过人工智能和机器学习算法将 dbGaP 遗传和基因组数据转变为 FAIR-ready
- 批准号:
10842954 - 财政年份:2017
- 资助金额:
$ 31.2万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10449376 - 财政年份:2017
- 资助金额:
$ 31.2万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9750105 - 财政年份:2017
- 资助金额:
$ 31.2万 - 项目类别:
Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS
通过 RNA-seq 和 GWAS 绘制复杂疾病的遗传结构
- 批准号:
9212507 - 财政年份:2016
- 资助金额:
$ 31.2万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9329385 - 财政年份:2016
- 资助金额:
$ 31.2万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9093087 - 财政年份:2016
- 资助金额:
$ 31.2万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




