Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
基本信息
- 批准号:10318084
- 负责人:
- 金额:$ 33.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-14 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAutomobile DrivingBioinformaticsBiologicalBrain DiseasesCell physiologyCellsCodeCommunitiesComplexComputerized Medical RecordComputing MethodologiesDNADataData ScienceData SetDatabasesDevelopmentDimensionsDiseaseElementsEnvironmental Risk FactorEpigenetic ProcessGene ExpressionGenesGeneticGenetic TranscriptionGenetic studyGenomeGenomicsGenotypeGenotype-Tissue Expression ProjectHumanHuman GenomeIndividualInformaticsLinkMapsMedical InformaticsMessenger RNAMethodsMiningMultiomic DataNeurodegenerative DisordersNeurodevelopmental DisorderOther GeneticsPhenotypePlayPopulationProteinsRegulationReportingResearchResearch PersonnelResolutionRoleSamplingSignal TransductionSingle Nucleotide PolymorphismStatistical MethodsTechnologyTimeTissue-Specific Gene ExpressionTissuesUntranslated RNAVariantbasebiobankcell typecohortcomputerized toolsdata miningdeep learningdisease phenotypedisorder riskepigenomicsfunctional genomicsgene environment interactiongene interactiongenetic architecturegenetic variantgenome wide association studygenome-wideheterogenous datahuman studyinnovationlearning strategyneural networkneuropsychiatric disordernovelprogramssingle cell sequencingsingle-cell RNA sequencingspatiotemporaltraittranscriptomeweb server
项目摘要
Project Summary
Complex disease and traits are caused by dynamic genetic regulation and environmental interactions.
Numerous genetic, genomic, and phenotypic datasets have been generated, including genotypes, gene
expression, epigenetic changes, and electronic medical records (EMRs). Currently, there is main challenge on
development of novel informatic approaches to effectively link phenotype with genomic information.
Specifically, genome-wide association studies (GWAS) have reported several thousand single nucleotide
polymorphisms (SNPs) that are significantly associated with the disease and traits; however, more than 80% of
them are noncoding variants, making it difficult to interpret their potential disease-causal roles. We and others
have systematically examined how phenotypic variability in disease risk for a broad spectrum of disease
phenotypes can be explained by regulatory variants. Now, we hypothesize that such regulation will be in a
tissue-specific, cell type-specific and developmental stage-specific (TCD-specific) manner. Importantly, large
genomic consortia, like ENCODE, FANTOM5, the Roadmap Epigenomics, and GTEx have continuously
generated high-quality functional data for annotating genome-wide variants. The emerging single-cell
sequencing technologies have enabled us to examine how genetic variants affect cellular functions within
individual cells or specific cell types. This brings us an unprecedented opportunity to develop novel statistical
and computational approaches for deep understanding of the genetic architecture of phenotype. In this
proposal, we combine bioinformatics, single cell omics, deep learning, and phenotype and EMR data mining to
develop novel analytical strategies that maximally leverage information from both genotype and expression
from massive heterogeneous data, aiming to predict phenotype by functional assessment of DNA variation at
the TCD-specific levels. We propose the following three specific aims. (1) To develop a deep learning method
for variant impact predictor, DeepVIP, that maximally utilizes functional and regulatory data to predict the
causal roles of variants in complex disease and traits. (2) To develop phenotype-specific network approaches
to resolve genotype-phenotype relationships in the spatiotemporal manner and single-cell resolution. We will
develop a novel method, single cell dense module search of GWAS signals (scGWAS) and also a graphical
neural network approach, GNN-scTP, to detect driving roles of genes from single cell RNA-seq data. These
methods can effectively identify critical regulatory modules and genes in complex disease in the TCD-specific
manner. (3) To apply the methods to 16 neurodevelopmental and neurodegenerative disorders and related
traits, as well as broad phenotypes using Vanderbilt biobank (BioVU) and UK Biobank data – both have
genotypes linked with rich phenotypic information. Our proposal is timely and innovative to study the genetic
architecture in human complex diseases and traits by dissecting important genetic components, especially
noncoding variants, at the functional, regulatory, spatial, temporal, and single cell levels.
项目摘要
复杂的疾病和性状是由动态的遗传调节和环境相互作用引起的。
已经产生了大量的遗传、基因组和表型数据集,包括基因类型、基因
表达、表观遗传变化和电子病历(EMR)。目前,主要的挑战是
开发新的信息学方法,有效地将表型与基因组信息联系起来。
具体地说,全基因组关联研究报告了几千个单核苷酸。
与疾病和性状显著相关的多态(SNP);然而,超过80%的
它们都是非编码变体,因此很难解释它们潜在的致病作用。我们和其他人
系统地研究了多种疾病的表型变异性对疾病风险的影响
表型可以用调控变异来解释。现在,我们假设这样的监管将在一个
组织特定、细胞类型特定和发育阶段特定(TCD特定)的方式。重要的是,大型
基因组联盟,如ENCODE,FANTOM5,路线图表观基因组学和GTEx不断
生成了用于注释全基因组变异的高质量功能数据。新兴的单细胞
测序技术使我们能够研究基因变异如何影响细胞功能
单个细胞或特定细胞类型。这给我们带来了一个前所未有的发展新统计学的机会
以及深入理解表型遗传结构的计算方法。在这
建议,我们结合生物信息学、单细胞组学、深度学习、表型和EMR数据挖掘来
开发新的分析策略,最大限度地利用来自基因和表达的信息
从海量的异质数据中,旨在通过对DNA变异的功能评估来预测表型
TCD特定水平。我们提出了以下三个具体目标。(1)发展深度学习方法
对于可变影响预测指标DeepVIP,它最大限度地利用功能和监管数据来预测
变异在复杂疾病和性状中的因果作用。(2)发展针对表型的网络方法
以时空方式和单细胞分辨率解析基因-表型关系。我们会
提出了一种新的方法--单细胞密集模块搜索法(ScGwas),并给出了一种图形化的方法
神经网络方法,GNN-scTP,从单细胞RNA-SEQ数据中检测基因的驱动作用。这些
方法可以有效地识别复杂疾病中的关键调控模块和基因在TCD中的特异性
举止。(3)将该方法应用于16例神经发育和神经退行性疾病及相关疾病。
特征,以及使用Vanderbilt Biobank(BioVU)和UK Biobank数据的广泛表型-两者都具有
基因连锁有丰富的表型信息。我们的建议是及时和创新的,研究遗传
人类复杂疾病和特征中的结构通过解剖重要的遗传成分,尤其是
在功能、调节、空间、时间和单细胞水平上的非编码变体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongming Zhao其他文献
Zhongming Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongming Zhao', 18)}}的其他基金
Constructing A Transcriptomic Atlas of Retrotransposon in Alzheimer's Disease
构建阿尔茨海默病逆转录转座子转录组图谱
- 批准号:
10431366 - 财政年份:2022
- 资助金额:
$ 33.26万 - 项目类别:
Deep learning methods to predict the function of genetic variants in orofacial clefts
深度学习方法预测口颌裂遗传变异的功能
- 批准号:
9764346 - 财政年份:2018
- 资助金额:
$ 33.26万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9980998 - 财政年份:2017
- 资助金额:
$ 33.26万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10640868 - 财政年份:2017
- 资助金额:
$ 33.26万 - 项目类别:
Transforming dbGaP genetic and genomic data to FAIR-ready by artificial intelligence and machine learning algorithms
通过人工智能和机器学习算法将 dbGaP 遗传和基因组数据转变为 FAIR-ready
- 批准号:
10842954 - 财政年份:2017
- 资助金额:
$ 33.26万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10449376 - 财政年份:2017
- 资助金额:
$ 33.26万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9750105 - 财政年份:2017
- 资助金额:
$ 33.26万 - 项目类别:
Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS
通过 RNA-seq 和 GWAS 绘制复杂疾病的遗传结构
- 批准号:
9212507 - 财政年份:2016
- 资助金额:
$ 33.26万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9329385 - 财政年份:2016
- 资助金额:
$ 33.26万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9093087 - 财政年份:2016
- 资助金额:
$ 33.26万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists