Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
基本信息
- 批准号:10318084
- 负责人:
- 金额:$ 33.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-14 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAutomobile DrivingBioinformaticsBiologicalBrain DiseasesCell physiologyCellsCodeCommunitiesComplexComputerized Medical RecordComputing MethodologiesDNADataData ScienceData SetDatabasesDevelopmentDimensionsDiseaseElementsEnvironmental Risk FactorEpigenetic ProcessGene ExpressionGenesGeneticGenetic TranscriptionGenetic studyGenomeGenomicsGenotypeGenotype-Tissue Expression ProjectHumanHuman GenomeIndividualInformaticsLinkMapsMedical InformaticsMessenger RNAMethodsMiningMultiomic DataNeurodegenerative DisordersNeurodevelopmental DisorderOther GeneticsPhenotypePlayPopulationProteinsRegulationReportingResearchResearch PersonnelResolutionRoleSamplingSignal TransductionSingle Nucleotide PolymorphismStatistical MethodsTechnologyTimeTissue-Specific Gene ExpressionTissuesUntranslated RNAVariantbasebiobankcell typecohortcomputerized toolsdata miningdeep learningdisease phenotypedisorder riskepigenomicsfunctional genomicsgene environment interactiongene interactiongenetic architecturegenetic variantgenome wide association studygenome-wideheterogenous datahuman studyinnovationlearning strategyneural networkneuropsychiatric disordernovelprogramssingle cell sequencingsingle-cell RNA sequencingspatiotemporaltraittranscriptomeweb server
项目摘要
Project Summary
Complex disease and traits are caused by dynamic genetic regulation and environmental interactions.
Numerous genetic, genomic, and phenotypic datasets have been generated, including genotypes, gene
expression, epigenetic changes, and electronic medical records (EMRs). Currently, there is main challenge on
development of novel informatic approaches to effectively link phenotype with genomic information.
Specifically, genome-wide association studies (GWAS) have reported several thousand single nucleotide
polymorphisms (SNPs) that are significantly associated with the disease and traits; however, more than 80% of
them are noncoding variants, making it difficult to interpret their potential disease-causal roles. We and others
have systematically examined how phenotypic variability in disease risk for a broad spectrum of disease
phenotypes can be explained by regulatory variants. Now, we hypothesize that such regulation will be in a
tissue-specific, cell type-specific and developmental stage-specific (TCD-specific) manner. Importantly, large
genomic consortia, like ENCODE, FANTOM5, the Roadmap Epigenomics, and GTEx have continuously
generated high-quality functional data for annotating genome-wide variants. The emerging single-cell
sequencing technologies have enabled us to examine how genetic variants affect cellular functions within
individual cells or specific cell types. This brings us an unprecedented opportunity to develop novel statistical
and computational approaches for deep understanding of the genetic architecture of phenotype. In this
proposal, we combine bioinformatics, single cell omics, deep learning, and phenotype and EMR data mining to
develop novel analytical strategies that maximally leverage information from both genotype and expression
from massive heterogeneous data, aiming to predict phenotype by functional assessment of DNA variation at
the TCD-specific levels. We propose the following three specific aims. (1) To develop a deep learning method
for variant impact predictor, DeepVIP, that maximally utilizes functional and regulatory data to predict the
causal roles of variants in complex disease and traits. (2) To develop phenotype-specific network approaches
to resolve genotype-phenotype relationships in the spatiotemporal manner and single-cell resolution. We will
develop a novel method, single cell dense module search of GWAS signals (scGWAS) and also a graphical
neural network approach, GNN-scTP, to detect driving roles of genes from single cell RNA-seq data. These
methods can effectively identify critical regulatory modules and genes in complex disease in the TCD-specific
manner. (3) To apply the methods to 16 neurodevelopmental and neurodegenerative disorders and related
traits, as well as broad phenotypes using Vanderbilt biobank (BioVU) and UK Biobank data – both have
genotypes linked with rich phenotypic information. Our proposal is timely and innovative to study the genetic
architecture in human complex diseases and traits by dissecting important genetic components, especially
noncoding variants, at the functional, regulatory, spatial, temporal, and single cell levels.
项目摘要
复杂的疾病和性状是由动态遗传调控和环境相互作用引起的。
已经生成了许多遗传、基因组和表型数据集,包括基因型、基因组和表型数据集。
表达、表观遗传变化和电子病历(EMR)。目前,主要挑战是
开发新的信息学方法,以有效地将表型与基因组信息联系起来。
具体来说,全基因组关联研究(GWAS)已经报道了数千个单核苷酸多态性。
多态性(SNP)与疾病和性状显著相关;然而,超过80%的
它们是非编码变异体,因此很难解释其潜在的致病作用。我们和其他人
系统地研究了疾病风险的表型变异性如何导致广泛的疾病
表型可以通过调节变体来解释。现在,我们假设这种监管将在一个
组织特异性、细胞类型特异性和发育阶段特异性(TCD特异性)方式。重要的是,大
基因组联盟,如ENCODE,FANTOM 5,路线图表观基因组学,和GTEx不断
生成高质量的功能数据,用于注释全基因组变异。新兴的单细胞
测序技术使我们能够研究遗传变异如何影响细胞功能,
单个细胞或特定细胞类型。这给我们带来了前所未有的发展新的统计学的机遇
和计算方法,以深入了解表型的遗传结构。在这
我们结合联合收割机、生物信息学、单细胞组学、深度学习、表型和EMR数据挖掘,
开发新的分析策略,最大限度地利用来自基因型和表达的信息
从大量的异质性数据,旨在通过DNA变异的功能评估预测表型,
TCD特异性水平。我们提出以下三个具体目标。(1)开发一种深度学习方法
对于变体影响预测器DeepVIP,它最大限度地利用功能和监管数据来预测
变异在复杂疾病和性状中的因果作用。(2)开发表型特异性网络方法
以时空方式和单细胞分辨率解析基因型-表型关系。我们将
开发了一种新的方法,单细胞密集模块搜索GWAS信号(scGWAS),也是一个图形化的
神经网络方法,GNN-scTP,从单细胞RNA-seq数据中检测基因的驱动作用。这些
方法可以有效地确定关键的调控模块和基因在复杂的疾病,在TCD特异性
方式(3)将这些方法应用于16种神经发育和神经退行性疾病及相关疾病
性状,以及广泛的表型使用范德比尔特生物银行(BioVU)和英国生物银行的数据-两者都有
与丰富的表型信息相关的基因型。我们的建议是及时和创新的研究遗传
通过解剖重要的遗传成分,特别是
非编码变体,在功能,调节,空间,时间和单细胞水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongming Zhao其他文献
Zhongming Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongming Zhao', 18)}}的其他基金
Constructing A Transcriptomic Atlas of Retrotransposon in Alzheimer's Disease
构建阿尔茨海默病逆转录转座子转录组图谱
- 批准号:
10431366 - 财政年份:2022
- 资助金额:
$ 33.26万 - 项目类别:
Deep learning methods to predict the function of genetic variants in orofacial clefts
深度学习方法预测口颌裂遗传变异的功能
- 批准号:
9764346 - 财政年份:2018
- 资助金额:
$ 33.26万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9980998 - 财政年份:2017
- 资助金额:
$ 33.26万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10640868 - 财政年份:2017
- 资助金额:
$ 33.26万 - 项目类别:
Transforming dbGaP genetic and genomic data to FAIR-ready by artificial intelligence and machine learning algorithms
通过人工智能和机器学习算法将 dbGaP 遗传和基因组数据转变为 FAIR-ready
- 批准号:
10842954 - 财政年份:2017
- 资助金额:
$ 33.26万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10449376 - 财政年份:2017
- 资助金额:
$ 33.26万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9750105 - 财政年份:2017
- 资助金额:
$ 33.26万 - 项目类别:
Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS
通过 RNA-seq 和 GWAS 绘制复杂疾病的遗传结构
- 批准号:
9212507 - 财政年份:2016
- 资助金额:
$ 33.26万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9329385 - 财政年份:2016
- 资助金额:
$ 33.26万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9093087 - 财政年份:2016
- 资助金额:
$ 33.26万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Studentship