Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS
通过 RNA-seq 和 GWAS 绘制复杂疾病的遗传结构
基本信息
- 批准号:9212507
- 负责人:
- 金额:$ 23.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2016-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Principal Investigator/Program Director (Last, first, middle): Zhao, Zhongming
Project Summary
Genome-wide association studies (GWAS) and RNA sequencing (RNA-Seq) are two major approaches for
studying the effects of genetic variations on complex diseases at the genomic and transcriptomic levels,
respectively. Specifically for RNA-Seq, it is rapidly emerging as a powerful tool for identifying differentially
expressed genes in diseases; however, many challenges remain because of the complexity in gene
regulations. In this proposal, we combine statistics, bioinformatics, and genetics to develop novel analytical
strategies that maximally leverage information from both GWAS and RNA-Seq studies in order to understand
the genetic architecture underlying complex diseases, especially schizophrenia. Our proposal will be the first
methodology development for a systems approach that integrates GWAS and RNA-Seq data. We propose the
following four major aims: (1) To develop novel analytical strategies to identify genes and pathways with
enriched association signals in GWAS by leveraging functional information measured by RNA sequencing. We
define this approach as RNA-Seq assisted GWAS analysis. (2) To develop novel analytical strategies to
identify genes and pathways with enriched association signals in RNA-Seq data by leveraging information from
genetics of gene expression studies. We define this approach as RNA-Seq oriented analysis. (3) To apply the
methods in Aims 1 and 2 to schizophrenia, which we have generated RNA-Seq data from 82 brain samples
collected from the Stanley Medical Research Institute and gained access to four major GWAS datasets for
schizophrenia (ISC, GAIN, nonGAIN, and CATIE: a total of more than 6000 cases and 6000 controls). This
application will also help us refine the strategies in Aims 1 and 2. (4) To develop computational tools for
detecting disease genes, pathways that lead to complex diseases. These tools will become a useful resource
for the public community and can be applied to any complex diseases with available RNA-Seq and GWAS
datasets. The successful completions of Aims 1 and 2 will provide us with important methods for integrative
genomic analysis of GWAS and RNA-Seq datasets. The successful completion of Aim 3 will provide us with a
list of prioritized candidate genes and pathways for future validation on schizophrenia. The successful
completion of Aim 4 will provide computational tools and a user-friendly online system for investigators who
study complex diseases using GWAS and RNA-Seq.
Project Description Page 6
主要研究者/项目负责人(末、首、中):赵忠明
项目摘要
全基因组关联研究(GWAS)和RNA测序(RNA-Seq)是两种主要的方法,
在基因组和转录组水平上研究遗传变异对复杂疾病的影响,
分别特别是对于RNA-Seq,它正在迅速成为一种强大的工具,用于识别差异
然而,由于基因表达的复杂性,
规定在这个提议中,我们将联合收割机统计学、生物信息学和遗传学结合起来,开发新的分析方法,
最大限度地利用来自GWAS和RNA-Seq研究的信息,
复杂疾病的遗传结构,尤其是精神分裂症。我们的提案将是第一个
为整合GWAS和RNA-Seq数据的系统方法开发方法。我们建议
以下四个主要目标:(1)开发新的分析策略,以确定基因和途径,
通过利用RNA测序测量的功能信息,丰富了GWAS中的关联信号。我们
将该方法定义为RNA-Seq辅助的GWAS分析。(2)开发新的分析策略,
通过利用来自以下方面的信息,在RNA-Seq数据中鉴定具有丰富关联信号的基因和途径:
基因表达研究的遗传学。我们将这种方法定义为RNA-Seq导向分析。(3)应用
我们已经从82个大脑样本中生成了RNA-Seq数据,
从斯坦利医学研究所收集,并获得了四个主要的GWAS数据集,
精神分裂症(ISC、GAIN、nonGAIN和CATIE:总计超过6000例病例和6000例对照)。这
应用这些技术还将帮助我们完善目标1和2中的战略。(4)开发计算工具,
检测疾病基因,导致复杂疾病的途径。这些工具将成为有用的资源
适用于公共社区,并可应用于任何复杂的疾病与可用的RNA-Seq和GWAS
数据集。目标1和目标2的成功完成将为我们提供重要的方法,
GWAS和RNA-Seq数据集的基因组分析。目标3的成功完成,将为我们提供一个
优先候选基因和路径的列表,用于未来对精神分裂症的验证。成功
目标4的完成将为研究人员提供计算工具和用户友好的在线系统,
使用GWAS和RNA-Seq研究复杂疾病。
项目描述第6页
项目成果
期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Concordance of copy number loss and down-regulation of tumor suppressor genes: a pan-cancer study.
- DOI:10.1186/s12864-016-2904-y
- 发表时间:2016-08-22
- 期刊:
- 影响因子:4.4
- 作者:Zhao M;Zhao Z
- 通讯作者:Zhao Z
Distinct and competitive regulatory patterns of tumor suppressor genes and oncogenes in ovarian cancer.
- DOI:10.1371/journal.pone.0044175
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Zhao M;Sun J;Zhao Z
- 通讯作者:Zhao Z
Integrative pathway analysis of genome-wide association studies and gene expression data in prostate cancer.
- DOI:10.1186/1752-0509-6-s3-s13
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Jia P;Liu Y;Zhao Z
- 通讯作者:Zhao Z
Investigating cellular network heterogeneity and modularity in cancer: a network entropy and unbalanced motif approach.
- DOI:10.1186/s12918-016-0309-9
- 发表时间:2016-08-26
- 期刊:
- 影响因子:0
- 作者:Cheng F;Liu C;Shen B;Zhao Z
- 通讯作者:Zhao Z
Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia.
- DOI:10.1371/journal.pcbi.1002587
- 发表时间:2012
- 期刊:
- 影响因子:4.3
- 作者:Jia P;Wang L;Fanous AH;Pato CN;Edwards TL;International Schizophrenia Consortium;Zhao Z
- 通讯作者:Zhao Z
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongming Zhao其他文献
Zhongming Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongming Zhao', 18)}}的其他基金
Constructing A Transcriptomic Atlas of Retrotransposon in Alzheimer's Disease
构建阿尔茨海默病逆转录转座子转录组图谱
- 批准号:
10431366 - 财政年份:2022
- 资助金额:
$ 23.53万 - 项目类别:
Deep learning methods to predict the function of genetic variants in orofacial clefts
深度学习方法预测口颌裂遗传变异的功能
- 批准号:
9764346 - 财政年份:2018
- 资助金额:
$ 23.53万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10318084 - 财政年份:2017
- 资助金额:
$ 23.53万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9980998 - 财政年份:2017
- 资助金额:
$ 23.53万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10640868 - 财政年份:2017
- 资助金额:
$ 23.53万 - 项目类别:
Transforming dbGaP genetic and genomic data to FAIR-ready by artificial intelligence and machine learning algorithms
通过人工智能和机器学习算法将 dbGaP 遗传和基因组数据转变为 FAIR-ready
- 批准号:
10842954 - 财政年份:2017
- 资助金额:
$ 23.53万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10449376 - 财政年份:2017
- 资助金额:
$ 23.53万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9750105 - 财政年份:2017
- 资助金额:
$ 23.53万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9329385 - 财政年份:2016
- 资助金额:
$ 23.53万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9093087 - 财政年份:2016
- 资助金额:
$ 23.53万 - 项目类别:
相似海外基金
Shared and distinct genetic architecture of autoimmune and hormonal alopecias
自身免疫性脱发和激素性脱发的共同和独特的遗传结构
- 批准号:
MR/X030466/1 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Research Grant
Integrative modelling of single-cell data to elucidate the genetic architecture of complex disease
单细胞数据的综合建模以阐明复杂疾病的遗传结构
- 批准号:
10889304 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
- 批准号:
10658215 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:
Genetic Architecture of Early-Onset Psychosis in Mexicans (EPIMex)
墨西哥人早发性精神病的遗传结构 (EPIMex)
- 批准号:
10716496 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:
The Genetic Architecture of Diabetic Retinopathy
糖尿病视网膜病变的遗传结构
- 批准号:
10605816 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:
Genetic architecture of transdiagnostic psychosis symptom dimensions
跨诊断精神病症状维度的遗传结构
- 批准号:
10572178 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:
Global studies into the Genetic Architecture of the Brain's White Matter Network through Harmonized and Coordinated Analyses in the ENIGMA-Consortium
通过 ENIGMA 联盟的统一和协调分析对大脑白质网络的遗传结构进行全球研究
- 批准号:
10720443 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:
Decrypting the genetic architecture of heart failure imaging signatures through machine learning in large-scale genome-wide association studies
在大规模全基因组关联研究中通过机器学习解密心力衰竭成像特征的遗传结构
- 批准号:
MR/X020924/1 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:
Fellowship
Genetic Architecture of Pure Alzheimer's Disease and Mixed Pathology
纯阿尔茨海默病和混合病理学的遗传结构
- 批准号:
10712591 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:














{{item.name}}会员




