Deep learning methods to predict the function of genetic variants in orofacial clefts
深度学习方法预测口颌裂遗传变异的功能
基本信息
- 批准号:9764346
- 负责人:
- 金额:$ 15.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:8q24AlgorithmsBehavior TherapyBinding SitesBiological ProcessCleft LipCleft lip with or without cleft palateComplexComputational BiologyComputer SimulationComputer softwareComputing MethodologiesCongenital AbnormalityConsensusDNADNA MethylationDataDentalDetectionDevelopmentDiseaseEconomicsEnvironmentEnvironmental ExposureEtiologyExplosionExpression ProfilingFaceBaseGene ExpressionGenesGeneticGenetic RiskGenetic studyGenomeGenomicsGenotypeHumanHuman GenomeIndividualLeadLive BirthMachine LearningMapsMeasuresMediatingMedicalMethodsModelingMolecularNutritionalOperative Surgical ProceduresPAX7 genePathway interactionsPatternPhenotypePlayPopulationProteinsPublic HealthRNARNA BindingReportingResearchResourcesRoleSample SizeSiteSpeechTimeTissuesTrainingUntranslated RNAValidationVariantbasecomputer infrastructurecraniofacialcraniofacial developmentdeep learningepigenomicsexomeexpectationgenetic risk factorgenetic variantgenome wide association studygenome-widegenome-wide analysisinsightinterestlearning strategymultidimensional datamultidisciplinarynext generation sequencingnovelnovel therapeuticsorofacialorofacial cleftorofacial developmentrare variantrisk variantsequence learningspatiotemporalsuccesstrait
项目摘要
Project Summary
Orofacial clefts (OFCs) comprise a significant fraction of human birth defects in all populations (ranging
between 1/500 to 1/2500 live births) and represent a major public health challenge. Individuals born with OFCs
require surgical, nutritional, dental, speech, medical and behavioral interventions, imposing a substantial
economic and personal burden. There has been convincing evidence that non-syndromic OFCs represent
human complex disorders with a multifactorial etiology including genetic risk factors, environmental exposures,
and their complex interactions. So far, there have been ~10 genome-wide association studies (GWAS)
conducted for non-syndromic CL/P (NSCL/P) and >15 genomic loci reported with compelling statistical support,
including genes such as IRF6, PAX7, and ABCA4 and the 8q24 locus. In addition, next-generation sequencing
(NGS) as well as exome array have been conducted with extra depth of genotyping that enable detection of rare
variants associated with OFCs. However, gaps exist in how to interpret these variants and how to identify novel
variants from the large volume of data, with high expectations for new methods and new models for “second-
analysis” of the genome-wide data. In this proposal, we propose two complementary aims to carry out deep and
second-analysis of genome-wide data for OFCs. In Aim 1, we propose a deep learning method to build in silico
models that can predict the effect of genetic variants in the context of rich craniofacial epigenomic features. With
substantial fine map of sequence patterns, ad hoc motifs will be revealed and variants that disturb these motifs
will provide mechanistic insights on OFCs. In Aim 2, we shift our focus to the gene level and propose a network
assisted method to discover sensibly combined genes in spatial and temporal points that are critical to orofacial
development. We target on all forms of OFCs, with particular interest in NSCL/P. To guarantee the success of
this proposal, we form a multi-disciplinary team and local computational infrastructure equipped with GPUs for
the implementation of both aims. Our aims are non-overlapping; rather, they are integrated and strongly focused
on our fundamental question of interest: how genetic variants function to cause OFCs. The successful completion
of our proposal will lead to deep understanding of genetic components in OFCs.
项目摘要
口面裂(OFC)在所有人群中(范围为100 - 200)占人类出生缺陷的很大比例。
1/500至1/2500活产),是一项重大的公共卫生挑战。出生时带有OFC的个人
需要手术、营养、牙科、言语、医疗和行为干预,
经济和个人负担。有令人信服的证据表明,非综合征型OFC代表了
具有多因素病因学的人类复杂疾病,包括遗传风险因素,环境暴露,
以及它们之间复杂的相互作用到目前为止,已经有大约10个全基因组关联研究(GWAS)
对非综合征CL/P(NSCL/P)和> 15个基因组位点进行了研究,报告了令人信服的统计学支持,
包括IRF6、PAX7、ABCA4和8q24基因座等基因。此外,下一代测序
(NGS)以及外显子组阵列已经进行了额外的基因分型深度,使检测罕见的
与OFC相关的变体。然而,在如何解释这些变体以及如何识别新变体方面存在差距
大量数据的变体,对"第二次"的新方法和新模型有很高的期望,
分析“全基因组数据”。在这一建议中,我们提出了两个相辅相成的目标,
对OFC的全基因组数据进行第二次分析。在目标1中,我们提出了一种深度学习方法,
这些模型可以在丰富的颅面表观基因组特征的背景下预测遗传变异的影响。与
将揭示序列模式的实质性精细图谱、特别基序以及干扰这些基序的变体
将提供关于OFC的机械见解。在目标2中,我们将重点转移到基因水平,并提出了一个网络
一种辅助方法,用于发现在空间和时间点上对口面至关重要的敏感组合基因
发展我们的目标是所有形式的离岸金融中心,特别是在非上市公司/P的兴趣。
在这个提议中,我们组建了一个多学科团队和配备GPU的本地计算基础设施,
实现这两个目标。我们的目标是不重叠的;相反,它们是一体化的,重点突出
关于我们感兴趣的基本问题:遗传变异如何导致OFC。圆满完成
我们的建议将导致对OFC遗传成分的深入了解。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gene expression imputation and cell-type deconvolution in human brain with spatiotemporal precision and its implications for brain-related disorders.
- DOI:10.1101/gr.265769.120
- 发表时间:2021-01
- 期刊:
- 影响因子:7
- 作者:Pei G;Wang YY;Simon LM;Dai Y;Zhao Z;Jia P
- 通讯作者:Jia P
Predicting regulatory variants using a dense epigenomic mapped CNN model elucidated the molecular basis of trait-tissue associations.
- DOI:10.1093/nar/gkaa1137
- 发表时间:2021-01-11
- 期刊:
- 影响因子:14.9
- 作者:Pei G;Hu R;Dai Y;Manuel AM;Zhao Z;Jia P
- 通讯作者:Jia P
Characterization of genome-wide association study data reveals spatiotemporal heterogeneity of mental disorders.
- DOI:10.1186/s12920-020-00832-8
- 发表时间:2020-12-28
- 期刊:
- 影响因子:2.7
- 作者:Dai Y;O'Brien TD;Pei G;Zhao Z;Jia P
- 通讯作者:Jia P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongming Zhao其他文献
Zhongming Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongming Zhao', 18)}}的其他基金
Constructing A Transcriptomic Atlas of Retrotransposon in Alzheimer's Disease
构建阿尔茨海默病逆转录转座子转录组图谱
- 批准号:
10431366 - 财政年份:2022
- 资助金额:
$ 15.4万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10318084 - 财政年份:2017
- 资助金额:
$ 15.4万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10640868 - 财政年份:2017
- 资助金额:
$ 15.4万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9980998 - 财政年份:2017
- 资助金额:
$ 15.4万 - 项目类别:
Transforming dbGaP genetic and genomic data to FAIR-ready by artificial intelligence and machine learning algorithms
通过人工智能和机器学习算法将 dbGaP 遗传和基因组数据转变为 FAIR-ready
- 批准号:
10842954 - 财政年份:2017
- 资助金额:
$ 15.4万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10449376 - 财政年份:2017
- 资助金额:
$ 15.4万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9750105 - 财政年份:2017
- 资助金额:
$ 15.4万 - 项目类别:
Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS
通过 RNA-seq 和 GWAS 绘制复杂疾病的遗传结构
- 批准号:
9212507 - 财政年份:2016
- 资助金额:
$ 15.4万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9329385 - 财政年份:2016
- 资助金额:
$ 15.4万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9093087 - 财政年份:2016
- 资助金额:
$ 15.4万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant














{{item.name}}会员




