Purinergic Stimulation of Bone Regeneration
嘌呤能刺激骨再生
基本信息
- 批准号:9269987
- 负责人:
- 金额:$ 53.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintADORA2A geneAdenine NucleotidesAdenosineAgonistAnimal ModelBMP2 geneBindingBiocompatible MaterialsBiologicalBlood VesselsBone GrowthBone Morphogenetic ProteinsBone RegenerationCalciumCalvariaCell LineCell physiologyCellsCeramicsClinicCollagenCoupledCustomCyclic AMPDefectDevelopmentDevice DesignsDipyridamoleDoseEndothelial CellsExtracellular FluidFamilyFamily memberFormulationFractureFracture HealingG-Protein-Coupled ReceptorsGenerationsGoalsGoldGrowth FactorHalf-LifeHumanHydrolysisHydroxyapatitesImplantIn VitroInfectionInflammationInflammatoryIntravenousKnock-outLeadLiquid substanceMeasuresMediatingMedicalMesenchymal Stem CellsModelingMolecularMusNatural regenerationNuclear TranslocationOralOryctolagus cuniculusOsteoblastsOsteoclastsOsteolysisPatientsPharmaceutical PreparationsPharmacologyPoriferaProsthesisPurine NucleosidesRadialReceptor SignalingRecording of previous eventsRegulationReportingResidual stateRoleSafetySignal PathwaySignal TransductionSignaling MoleculeSiteSourceStem cellsSurfaceTestingTranslatingTranslationsTraumaTumor Cell InvasionUnited StatesWNT Signaling Pathwayangiogenesisbioactive ceramicbonebone healingbone metabolismcell typeclinical practiceclinically relevantdesigndigitaldisabilityextracellularhealingimplantationimprovedin vivoinhibitor/antagonistknock-downlong bonemigrationmouse modelnovelnovel strategiespublic health relevancereceptorrepairedscaffoldtripolyphosphateuptakevasculogenesis
项目摘要
DESCRIPTION (provided by applicant): Over 2 million long bone fractures are treated in the United States every year. Although most bone fractures heal spontaneously there is no "gold standard" for promoting bone regeneration in those settings in which either fractures do not heal or there is a critical sized segmental bone defect due to trauma or infection, devastating medical problems leading to significant disability. The recent development of custom printed biomaterial scaffolds that can fit and fill large bone defects may provide a novel solution and coating these scaffolds with agents designed to promote more rapid and complete bone healing may increase the efficacy of prosthetic scaffolds in healing segmental bone defects. Although currently used to promote bone generation, growth factors such as rh-BMP2 (BMP2) are of questionable efficacy and present significant safety issues. We have recently reported that adenosine A2A receptor (A2AR) stimulation increases osteoblast number and regulates osteoblast function in a murine model of inflammatory osteolysis and that A2AR stimulation diminishes osteoclast differentiation by inhibiting NF¿B activation and nuclear translocation. Moreover, A2ARs stimulate angiogenesis and vasculogenesis in vitro and in vivo. Thus, we propose to test the hypothesis that 3- dimensional printed scaffolds coated with an agent, dipyridamole, that increases local adenosine levels and indirectly stimulates A2ARs can further promote bone regeneration at critical sized segmental bone defects and to determine the cellular and molecular mechanisms for this phenomenon. We therefore propose the following aims: I. Development of coated bioactive ceramic scaffolds to treat critical segmental bone defects. We will determine whether implanting 3-dimensionally printed calcium triphosphate/hydroxyapatite scaffolds coated with dipyridamole, an agent which blocks cellular adenosine uptake and increases adenosine concentration in extracellular fluids, promotes bone regeneration in a rabbit radius model of segmental bone defect. We will further maximize scaffold design and dipyridamole dosing in vitro and in a murine calvaria model of bone regeneration. II. Determination of the cellular mechanism by which A2AR stimulation promotes bone regeneration. Using global and cell-selective knockouts of A2AR we will determine the cellular basis for A2AR-mediated bone regeneration in the murine calvaria model. III. Examination of the molecular mechanisms by which A2AR stimulation promotes bone regeneration in osteoblasts. We will test the hypothesis that A2AR signaling interacts with critical intracellular signaling cascades to promote bone regeneration using pharmacologic inhibitors of signaling pathways and by targeted knockdown of critical signaling molecules in primary cells and cell lines. The goals of this highly translational project are to establish the molecular and cellular basis for targeting A2ARs to stimulate bone regeneration and to rapidly translate these findings to the clinic.
描述(由适用提供):每年在美国处理超过200万个长骨碎片。尽管大多数骨碎片愈合的赞助商都不是在那些分数无法愈合或由于创伤或感染引起的关键大小的分段骨缺损的情况下促进骨再生的“黄金标准”,这导致了严重的残疾。定制的生物材料支架的最新开发可以适合和填充大骨缺损,可能会提供一种新颖的解决方案,并与旨在促进更快和完整的骨骼愈合的试剂涂上这些脚手架,这可能会提高假体支架在愈合节段性骨骼缺陷中的有效性。尽管目前用于促进骨骼产生,但诸如RH-BMP2(BMP2)之类的生长因素具有可疑的有效性,并提出了重大的安全问题。我们最近报道说,腺苷A2A接收器(A2AR)刺激增加了成骨细胞的数量,并调节成骨细胞在炎症性溶解的鼠模型中,而A2AR刺激会通过抑制NF的激活和核转运来减少破骨细胞的分化。此外,A2AR在体外和体内刺激血管生成和血管生成。这是我们建议检验的假设:三维印刷支架涂有代理二吡啶胺,从而增加了局部腺苷水平并间接刺激A2ARS A2ARS可以进一步促进关键大小的段落缺陷的骨骼再生并确定该景色的细胞和分子机制。因此,我们提出以下目的:I。开发涂层的生物活性陶瓷支架以治疗关键的节骨缺损。我们将确定植入三维印刷的三磷酸钙/羟基磷灰石支架是否涂有二吡啶胺涂有二吡啶氨基,这种药物会阻止细胞腺苷摄取并增加细胞外流体中的腺苷浓度,从而促进分段骨骨骼缺陷模型中骨骼再生的骨再生。我们将进一步最大化脚手架设计和二吡啶胺的剂量,并在鼠类的鼠类再生模型中。 ii。 A2AR刺激促进骨再生的细胞机制的测定。使用A2AR的全局和细胞选择性敲除我们将确定鼠瓦尔瓦里亚模型中A2AR介导的骨再生的细胞基础。 iii。检查A2AR刺激促进成骨细胞中骨再生的分子机制的检查。我们将测试A2AR信号传导与关键细胞内信号传导级联相互作用的假设,以使用信号通路的药物抑制剂以及通过对原代细胞和细胞系中临界信号分子的靶向敲低进行靶向敲低来促进骨骼再生。这个高度翻译的项目的目标是建立靶向A2AR的分子和细胞基础,以刺激骨骼再生并迅速将这些发现转化为诊所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE Neil CRONSTEIN其他文献
BRUCE Neil CRONSTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE Neil CRONSTEIN', 18)}}的其他基金
Engineering Personalized Devices for Craniomaxillofacial Defects
针对颅颌面缺陷设计个性化设备
- 批准号:
10116988 - 财政年份:2019
- 资助金额:
$ 53.64万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 53.64万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 53.64万 - 项目类别:
Genetics and neurobiology of aggression of Betta splendens
芨芨草攻击行为的遗传学和神经生物学
- 批准号:
10731186 - 财政年份:2023
- 资助金额:
$ 53.64万 - 项目类别:
Low-Dose Magneto-Thrombolysis to Expand Stroke Care
低剂量磁溶栓扩大中风治疗范围
- 批准号:
10693650 - 财政年份:2023
- 资助金额:
$ 53.64万 - 项目类别:
Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
- 批准号:
10792738 - 财政年份:2023
- 资助金额:
$ 53.64万 - 项目类别: