Quantitative approaches to reveal the homeostatic control mechanisms of stress re
揭示应激反应稳态控制机制的定量方法
基本信息
- 批准号:9349371
- 负责人:
- 金额:$ 48.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-19 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBinding ProteinsBiochemicalBiochemistryBiological AssayCellsChaperone Protein InteractionCollectionComplexDNA DamageDNA Sequence AlterationDefectDiabetes MellitusDiseaseDissociationEndoplasmic ReticulumEnsureEnvironmentEquilibriumEukaryotaFailureFeedbackGene TargetingGeneticGoalsHealthHeat shock factorHeat-Shock ResponseHomeostasisHumanIn VitroInvestigationKnowledgeLeadLibrariesMalignant - descriptorMalignant NeoplasmsMeasurementMissionModelingModificationMolecular ChaperonesMolecular ProfilingNeurodegenerative DisordersOsmolar ConcentrationOutcomeOxidative StressPathway interactionsPatternPharmaceutical PreparationsPhosphorylationPhosphorylation SitePropertyProteinsPublic HealthRegulationReporterResearchRoleSaccharomycetalesStressSystemSystems BiologyTemperatureTherapeuticTimeUnited States National Institutes of HealthWorkbiological adaptation to stressexperimental studyfitnessin vivoinsightmathematical modelneglectpathogenprotein foldingpublic health relevanceresponsetherapeutic developmenttherapy developmenttranscription factor
项目摘要
DESCRIPTION (provided by applicant): Faced with myriad external insults, like temperature changes and osmolarity imbalances, cells must adjust their biochemical activities to meet ever-shifting demands. To counteract environmental challenges, or stresses, cells have evolved a collection of stress response pathways that work as corrective feedback loops to restore homeostasis when the cell is thrown out of equilibrium. Stress responses are ancient and the core pathways are conserved in all eukaryotes. Defects in these pathways - failures to restore homeostasis - can have deleterious effects, as in disease states like diabetes. Moreover, pathogens and cancers can selectively modulate and exploit stress response pathways to harness their cytoprotective functions. While decades of genetics, biochemistry and expression profiling have identified the pathways, worked out the basic activation mechanisms and revealed the target genes our current understanding of stress response pathways lacks both depth and breadth. It lacks depth in that we do not know the mechanisms that control the pathways in real-time to ensure sufficient activation upon stress and efficient deactivation once homeostasis is restored. Our understanding lacks breadth in that the pathways have generally been studied independently, neglecting potential interconnections. A quantitative and mechanistic understanding of how these pathways are regulated to restore homeostasis and knowledge of how the different stress responses operate as an interconnected network are prerequisites to effectively modulating these pathways for therapeutic purposes. In this context, I propose three specific aims to increase the depth of our understanding of the quantitative regulatory mechanisms that control stress response pathways and the breadth of our understanding of the interconnections between these responses. In the first two aims I will focus on the heat shock response, the elemental and and prototypical stress response, to reveal how phosphorylation and chaperone protein binding dynamics quantitatively regulate the activity of the transcription factor, Hsf1. In the third aim, I will focus on the interconnections between stres response pathways by building a panel of stress reporter strains that will allow simultaneous measurement of all stress responses following any genetic or environmental perturbation. The proposed research is significant because it will provide depth and breadth to our understanding of stress responses. Such understanding is a prerequisite to effectively harnessing these vital pathways for therapeutic benefit. Finally, I expect that the mechanistic systems biology approach described here will serve as a model for the quantitative investigation of pathways and networks in increasingly complex systems.
描述(申请人提供):面对无数外界的侮辱,如温度变化和渗透压失衡,细胞必须调整其生化活动,以满足不断变化的需求。为了对抗环境挑战或压力,细胞进化了一系列应激反应通路,当细胞失去平衡时,这些通路作为纠正反馈环来恢复体内平衡。应激反应是古老的,核心通路在所有真核生物中都是保守的。这些途径的缺陷--无法恢复体内平衡--可能会产生有害的影响,比如在糖尿病等疾病状态下。此外,病原体和癌症可以选择性地调节和利用应激反应途径来利用它们的细胞保护功能。虽然几十年的遗传学、生物化学和表达谱分析已经确定了这些途径,解决了基本的激活机制,并揭示了目标基因,但我们目前对应激反应途径的了解既缺乏深度也缺乏广度。它缺乏深度,因为我们不知道实时控制这些通路的机制,以确保在应激时足够的激活和一旦内稳态恢复后有效的去激活。我们的理解缺乏广度,因为这些通路一般都是独立研究的,忽略了潜在的相互联系。定量和机械地了解这些通路是如何调节以恢复内稳态的,以及了解不同的应激反应如何作为一个相互连接的网络运行是有效调节这些通路以达到治疗目的的先决条件。在此背景下,我提出了三个具体目标,以增加我们对控制应激反应途径的数量调控机制的理解的深度,以及我们对这些反应之间相互联系的理解的广度。在前两个目标中,我将重点放在热休克反应,基本和典型的应激反应,以揭示磷酸化和伴侣蛋白结合动力学如何定量调节转录因子HSF1的活性。在第三个目标中,我将通过建立一个压力报告菌株小组来关注应激反应途径之间的相互联系,该小组将允许同时测量任何遗传或环境扰动后的所有应激反应。这项拟议的研究具有重要意义,因为它将为我们理解应激反应提供深度和广度。这样的理解是有效利用这些重要途径获得治疗益处的先决条件。最后,我期望这里描述的机械系统生物学方法将作为对日益复杂的系统中的路径和网络进行定量研究的模型。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An evolution-based strategy for engineering allosteric regulation.
一种基于进化的工程变构调节策略。
- DOI:10.1088/1478-3975/aa64a4
- 发表时间:2017
- 期刊:
- 影响因子:2
- 作者:Pincus,David;Resnekov,Orna;Reynolds,KimberlyA
- 通讯作者:Reynolds,KimberlyA
Chaperone AMPylation modulates aggregation and toxicity of neurodegenerative disease-associated polypeptides.
- DOI:10.1073/pnas.1801989115
- 发表时间:2018-05-29
- 期刊:
- 影响因子:11.1
- 作者:Truttmann MC;Pincus D;Ploegh HL
- 通讯作者:Ploegh HL
Delayed Ras/PKA signaling augments the unfolded protein response.
延迟的 Ras/PKA 信号传导增强了未折叠的蛋白质反应。
- DOI:10.1073/pnas.1409588111
- 发表时间:2014
- 期刊:
- 影响因子:11.1
- 作者:Pincus,David;Aranda-Díaz,Andrés;Zuleta,IgnacioA;Walter,Peter;El-Samad,Hana
- 通讯作者:El-Samad,Hana
Subcellular localization of the J-protein Sis1 regulates the heat shock response.
J蛋白SIS1的亚细胞定位调节热休克响应。
- DOI:10.1083/jcb.202005165
- 发表时间:2021-01-04
- 期刊:
- 影响因子:0
- 作者:Feder ZA;Ali A;Singh A;Krakowiak J;Zheng X;Bindokas VP;Wolfgeher D;Kron SJ;Pincus D
- 通讯作者:Pincus D
Serial Immunoprecipitation of 3xFLAG/V5-tagged Yeast Proteins to Identify Specific Interactions with Chaperone Proteins.
对 3xFLAG/V5 标记的酵母蛋白进行连续免疫沉淀,以鉴定与伴侣蛋白的特异性相互作用。
- DOI:10.21769/bioprotoc.2348
- 发表时间:2017
- 期刊:
- 影响因子:0.8
- 作者:Zheng,Xu;Pincus,David
- 通讯作者:Pincus,David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Pincus其他文献
David Pincus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Pincus', 18)}}的其他基金
Regulatory Dynamics of the Proteostasis Network
蛋白质稳态网络的调控动态
- 批准号:
10594438 - 财政年份:2021
- 资助金额:
$ 48.75万 - 项目类别:
Regulatory Dynamics of the Proteostasis Network
蛋白质稳态网络的调控动态
- 批准号:
10210948 - 财政年份:2021
- 资助金额:
$ 48.75万 - 项目类别:
Regulatory Dynamics of the Proteostasis Network
蛋白质稳态网络的调控动态
- 批准号:
10392450 - 财政年份:2021
- 资助金额:
$ 48.75万 - 项目类别:
Quantitative approaches to reveal the homeostatic control mechanisms of stress re
揭示应激反应稳态控制机制的定量方法
- 批准号:
8609686 - 财政年份:2013
- 资助金额:
$ 48.75万 - 项目类别:
Quantitative approaches to reveal the homeostatic control mechanisms of stress re
揭示应激反应稳态控制机制的定量方法
- 批准号:
9135555 - 财政年份:2013
- 资助金额:
$ 48.75万 - 项目类别:
Quantitative approaches to reveal the homeostatic control mechanisms of stress re
揭示应激反应稳态控制机制的定量方法
- 批准号:
8737997 - 财政年份:2013
- 资助金额:
$ 48.75万 - 项目类别:
Quantitative approaches to reveal the homeostatic control mechanisms of stress re
揭示应激反应稳态控制机制的定量方法
- 批准号:
8918355 - 财政年份:2013
- 资助金额:
$ 48.75万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
Discovery Projects
Structural classification of NHEJ pathways; unravelling the role of Ku-binding proteins
NHEJ通路的结构分类;
- 批准号:
MR/X00029X/1 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Research Grant
BRC-BIO: Evolutionary Patterns of Ice-Binding Proteins in North Pacific Intertidal Invertebrates
BRC-BIO:北太平洋潮间带无脊椎动物冰结合蛋白的进化模式
- 批准号:
2312378 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
Exploring the roles and functions of sex steroid hormone receptor-associated RNA binding proteins in the development of geriatric diseases.
探索性类固醇激素受体相关 RNA 结合蛋白在老年疾病发展中的作用和功能。
- 批准号:
23K06408 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
- 批准号:
10680969 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Investigating physiologic and pathophysiologic connections between the Parkinson's disease protein alpha-synuclein and RNA binding proteins
研究帕金森病蛋白 α-突触核蛋白和 RNA 结合蛋白之间的生理和病理生理联系
- 批准号:
10744556 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Structural and computational analysis of immune-related RNA-binding proteins
免疫相关 RNA 结合蛋白的结构和计算分析
- 批准号:
23K06597 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of carbohydrate-binding proteins and their applications
碳水化合物结合蛋白的表征及其应用
- 批准号:
23K05034 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A machine learning approach to identify carbon dioxide-binding proteins for sustainability and health
一种机器学习方法来识别二氧化碳结合蛋白以实现可持续发展和健康
- 批准号:
2838427 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Studentship
RNA-binding proteins in bacterial virulence and host-pathogen interactions
RNA结合蛋白在细菌毒力和宿主-病原体相互作用中的作用
- 批准号:
10659346 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别: