Protrusion plasticity during in vivo tumor cell migration

体内肿瘤细胞迁移过程中的突出可塑性

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Dr. Bravo-Cordero obtained his degree in biology at Autonoma University of Madrid, Spain. After completing his doctorate work, in which he used high-resolution confocal imaging techniques to study cancer cell biology, he continued his training in the area of state-of-the-art imaging in the laboratories of Dr. John Condeelis and Dr. Louis Hodgson. During postdoctoral training, Dr. Bravo-Cordero focused on understanding how RhoGTPases are spatiotemporally regulated during breast cancer cell migration and invasion. He w a s trained in techniques such as FRET microscopy as well as FRET biosensors imaging to address these questions. His work to date has resulted in 23 peer-review publications. Recent work has shown that metastasis of tumor cells is affected by the extracellular microenvironment in which the cells are located. In order to understand the mechanisms of tumor cell metastasis and the activation of the intracellular signals, high-resolution microscopy techniques like multiphoton imaging is an ideal modality to observe tumor cells inside their physiological environment. In vitro models are limited in their complexity, thus using animal models that recapitulate the disease, will be a more effective way to address questions that could not be addressed with in vitro systems. Dr. Bravo Cordero has been trained in techniques such as multiphoton in vivo imaging and FRET microscopy in order to understand cell signaling in vivo. This training makes it possible to lead a laboratory that integrates animal models, multiphoton imaging and FRET- biosensor imaging in vivo to understand mechanisms of tumor cell metastasis. Environment: Advisory committee of the PI included Dr. John Condeelis, Co-Chair of Anatomy Department and Biophotonic Center at Einstein. His lab and the Center create a multidisciplinary environment focused on answering mechanisms of human diseases, such as cancer, through use of microscopy. The Center is well known for its shared imaging resources and Innovation Laboratory, in which new microscopes are custom-built to accommodate specific needs of different projects. Other members of the advisory committee are: Dr. Louis Hodgson, he is an expert in FRET biosensor imaging and FRET biosensor design and Dr. Richard Stanley, he is an expert on macrophages biology and CSF-1 receptor signaling, he also studies F-Bar domain proteins in the context of chemotaxis. Dr. Richard Stanley is also a renowned mentor. Einstein is an institution that values collaboration and insists on career development of postdoctoral fellows, instructors and junior faculty. Research: Motility and invasion are crucial steps for multiple processes from development and homeostasis to metastasis. In order for cells to move, they must form membrane extensions to propel themselves through the extracellular matrix. Thus, understanding the molecular pathways that drive spatiotemporal control of protrusion formation is a fundamental question to be answered. The tumor microenvironment is composed of collagen fibers, stromal cells and blood vessels that, in combination, will influence the motility behavior of tumor cells. RhoGTPases are master regulators of cytoskeleton dynamics being tightly regulated by multiple proteins. A family of proteins containing Bar-domains acts at the interface between membrane plasticity and RhoGTPases signaling, and these proteins have emerged as important regulators of GTPases and membrane shape. The final migratory output of a tumor cell will be dictated by the extracellular matrix conditions and that will be translated through a complex signaling system that include BAR proteins and RhoGTPases to induce cytoskeleton rearrangements. Signaling pathways through RhoGTPases have been widely studied in vitro, but the mechanism that regulates GTPase activation in vivo is still unknown. To address the link between tumor microenvironment, motility behavior and RhoGTPases signaling is necessary to combine multiphoton intravital imaging with FRET-biosensors imaging. Two different types of protrusion have been shown to mediate tumor invasion, lamellipodia and invadopodia. To date, it is not clear the contribution of each of them to motility in vivo and tumor intravasation. My preliminary results have shown that tumor cells expressing β-actin-TagRFP-T as a marker for pseudopodia protrusions show that cell extending membrane protrusion in order to move have enriched in action. Aim 1 will explore how signaling mediated by the GTPases RhoA and RhoC determine the formation of invadopodia and pseudopodia protrusions depending on the extracellular matrix context. By using FRET biosensors in vivo, the activation pattern of these GTPases will be analyzed in these different protrusions. In preliminary experiments the Bar protein srGAP1, which regulates RhoGTPases, is recruited to pseudopodia and invadopodia protrusions of tumor cells. Aim 2 will explore the role of srGAP1 in establishing lamellipodia and invadopodia protrusions through RhoGTPases regulation. Aim 3 will explore the role of srGAP1 in tumor cell dissemination and metastasis in vivo. Results of this study will lead to a better understanding of the interplay among microenvironment components, GTPase signaling and cytoskeleton rearrangements during tumor progression and the results will be used to improve diagnosis and treatment of early metastasis.
 描述(由适用提供):Bravo-Cordero博士在西班牙马德里市自治科大学获得了生物学学位。在完成博士学位的工作后,他使用高分辨率共聚焦成像技术来研究癌细胞生物学,他继续在约翰·康迪利斯(John Condeelis)博士和路易斯·霍奇森(Louis Hodgson)博士实验室的最先进成像领域进行培训。在博士后训练中,Bravo-Cordero博士致力于了解在乳腺癌细胞迁移和侵袭过程中如何在空间调节Rhogtpases。他接受了诸如FRET显微镜以及FRET生物传感器成像等技术的培训,以解决这些问题。迄今为止,他的工作导致了23个同行评审出版物。最近的工作表明,肿瘤细胞的转移受细胞所在的细胞外微环境的影响。为了了解肿瘤细胞转移的机制和细胞内信号的激活,高分辨率显微镜技术(如多光子成像)是观察其物理环境中肿瘤细胞的理想方式。体外模型的复杂性受到限制,因此使用概括疾病的动物模型将是解决无法通过体外系统解决的问题的更有效方法。 Bravo Cordero博士已经接受了诸如体内成像和FRET显微镜之类的技术的培训,以了解体内的细胞信号传导。这种训练使领导一个将动物模型,多光子成像和体内生物传感器成像整合的实验室成为可能,以了解肿瘤细胞转移的机制。环境:PI咨询委员会包括爱因斯坦解剖学系和生物热中心联席主席John Condeelis博士。他的实验室和中心创造了一个多学科环境,旨在通过使用显微镜来解决人类疾病(例如癌症)的机制。该中心以其共享的成像资源和创新实验室而闻名,其中新的显微镜是定制的,以满足不同项目的特定需求。咨询委员会的其他成员是:路易斯·霍奇森(Louis Hodgson)博士,他是FRET BioSensor成像和FRET BioSensor Design的专家,Richard Stanley博士是巨噬细胞生物学和CSF-1受体信号的专家,他还研究了Chemotaxis的背景下的F-BAR域蛋白质。理查德·斯坦利(Richard Stanley)博士也是著名的精神。爱因斯坦(Einstein)是一个重视合作并坚持博士后研究员,讲师和初级教师的职业发展的机构。研究:运动和入侵是从发育和稳态到转移的多个过程的关键步骤。为了使细胞移动,它们必须形成膜延伸,以通过细胞外基质推动自己。这是理解驱动蛋白质形成的空间时间控制的分子途径是要回答的基本问题。肿瘤微环境由胶原纤维,基质细胞和血管组成,这些胶原纤维将影响肿瘤细胞的运动行为。 Rhogtpases是由多种蛋白质严格调节的细胞骨架动力学的主要调节剂。含有条形域的蛋白质家族在膜可塑性和Rhogtpases信号传导之间的界面作用,这些蛋白质已成为GTPase和膜形状的重要调节剂。肿瘤细胞的最终迁移输出将由细胞外基质条件决定,并通过包括条蛋白和RhogTPases的复杂信号系统进行翻译,以诱导细胞骨架重排。通过RhoGTPases的信号通路在体外已广泛研究,但是调节体内GTPase激活的机制仍然未知。为了解决肿瘤微环境之间的联系,对于将多极子插入式成像与FRET-BIOSENSERS成像相结合的运动行为和RhogTPases信号传导是必要的。已显示两种不同类型的蛋白质可以介导肿瘤侵袭,薄膜脂蛋白和Invadopodia。迄今为止,尚不清楚它们每个人对体内运动和肿瘤侵入的贡献。我的初步结果表明,表达β-肌动蛋白-tagrfp-t的肿瘤细胞作为假蛋白质蛋白的标志物表明,延伸膜蛋白以移动的细胞富集了作用。 AIM 1将探讨GTPase RhoA和RHOC介导的信号传导如何确定Invadodia和pseudopodia的形成。突起取决于细胞外基质上下文。通过在体内使用FRET生物传感器,将在这些不同的蛋白质中分析这些GTPase的激活模式。在初步实验中,调节Rhogtpases的BAR蛋白SRGAP1被募集到肿瘤细胞的假卵形和侵袭性蛋白中。 AIM 2将探讨SRGAP1在通过Rhogtpases调节中建立Lamellipodia和Invadopodia蛋白质中的作用。 AIM 3将探索SRGAP1在体内肿瘤细胞传播和转移中的作用。这项研究的结果将使对微环境组件之间的相互作用,GTPase信号传导和细胞骨架重排期间的相互作用有更好的了解,并将结果用于改善早期转移的诊断和治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Javier Bravo-Cordero其他文献

Jose Javier Bravo-Cordero的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Javier Bravo-Cordero', 18)}}的其他基金

IMAT-ITCR Collaboration: Artificial intelligence enhanced breast cancer dormancy cell classification-based organelle-morphology and topology
IMAT-ITCR 合作:人工智能增强乳腺癌休眠细胞分类的细胞器形态和拓扑
  • 批准号:
    10884760
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
Intersectional genetics-based biosensors for dormant cancer cells
基于交叉遗传学的休眠癌细胞生物传感器
  • 批准号:
    10612300
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
Recording the natural history of cancer progression using a Crainbow model of HER2+ cancer
使用 HER2 癌症的 Crainbow 模型记录癌症进展的自然史
  • 批准号:
    10630320
  • 财政年份:
    2022
  • 资助金额:
    $ 19.22万
  • 项目类别:
Recording the natural history of cancer progression using a Crainbow model of HER2+ cancer
使用 HER2 癌症的 Crainbow 模型记录癌症进展的自然史
  • 批准号:
    10437462
  • 财政年份:
    2022
  • 资助金额:
    $ 19.22万
  • 项目类别:
Defining the role of type III collagen and the collagen-binding receptor DDR1 in metastatic dormancy
定义 III 型胶原和胶原结合受体 DDR1 在转移休眠中的作用
  • 批准号:
    10263927
  • 财政年份:
    2020
  • 资助金额:
    $ 19.22万
  • 项目类别:
Defining the role of type III collagen and the collagen-binding receptor DDR1 in metastatic dormancy
定义 III 型胶原和胶原结合受体 DDR1 在转移休眠中的作用
  • 批准号:
    10439836
  • 财政年份:
    2020
  • 资助金额:
    $ 19.22万
  • 项目类别:
Defining the role of type III collagen and the collagen-binding receptor DDR1 in metastatic dormancy
定义 III 型胶原和胶原结合受体 DDR1 在转移休眠中的作用
  • 批准号:
    10653992
  • 财政年份:
    2020
  • 资助金额:
    $ 19.22万
  • 项目类别:
Protrusion plasticity during in vivo tumor cell migration
体内肿瘤细胞迁移过程中的突出可塑性
  • 批准号:
    9534544
  • 财政年份:
    2016
  • 资助金额:
    $ 19.22万
  • 项目类别:
Core B - Advance Imaging Core
核心 B - 高级成像核心
  • 批准号:
    10602538
  • 财政年份:
    2009
  • 资助金额:
    $ 19.22万
  • 项目类别:
Core B - Advance Imaging Core
核心 B - 高级成像核心
  • 批准号:
    10397005
  • 财政年份:
    2009
  • 资助金额:
    $ 19.22万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Identification of regulators in the vertebrate egg-to-embryo transition
脊椎动物卵到胚胎转变过程中调节因子的鉴定
  • 批准号:
    10371345
  • 财政年份:
    2022
  • 资助金额:
    $ 19.22万
  • 项目类别:
Identification of regulators in the vertebrate egg-to-embryo transition
脊椎动物卵到胚胎转变过程中调节因子的鉴定
  • 批准号:
    10663791
  • 财政年份:
    2022
  • 资助金额:
    $ 19.22万
  • 项目类别:
Defining cytoskeletal mechanisms driving cell motility in Naegleria
定义耐格里虫细胞驱动细胞运动的细胞骨架机制
  • 批准号:
    10510010
  • 财政年份:
    2022
  • 资助金额:
    $ 19.22万
  • 项目类别:
Defining the Role of ROR2 in Right Ventricular Failure Pathogenesis
定义 ROR2 在右心室衰竭发病机制中的作用
  • 批准号:
    10463790
  • 财政年份:
    2021
  • 资助金额:
    $ 19.22万
  • 项目类别:
Determining genetic mechanisms that drive in vitro hematopoiesis
确定驱动体外造血的遗传机制
  • 批准号:
    10453654
  • 财政年份:
    2021
  • 资助金额:
    $ 19.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了