Protrusion plasticity during in vivo tumor cell migration
体内肿瘤细胞迁移过程中的突出可塑性
基本信息
- 批准号:9534544
- 负责人:
- 金额:$ 19.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAdvisory CommitteesAffectAnatomyAnimal ModelAreaBehaviorBiologyBiophotonicsBiosensorBlood VesselsBreast Cancer CellBreast Cancer ModelBreast cancer metastasisCell CommunicationCell PolarityCellsCellular MorphologyCellular biologyChemotaxisCollaborationsCollagen FiberComplexCuesCustomCytoskeletonDataDevelopmentDiagnosisDimensionsDiseaseEarly treatmentEnvironmentEventExposure toExtracellular MatrixFacultyFluorescence Resonance Energy TransferGoalsGuanosine Triphosphate PhosphohydrolasesHomeostasisImageImaging TechniquesIn VitroInstitutionKnowledgeLaboratoriesLeadLinkMacrophage Colony-Stimulating Factor ReceptorMalignant NeoplasmsMediatingMembraneMentorsMicroscopeMicroscopyModalityMoldsMolecularMonitorMovementNeoplasm MetastasisOutcomeOutputPathway interactionsPatternPeer ReviewPhenotypePhysiologicalPlayPostdoctoral FellowPrimary NeoplasmProcessProtein FamilyProteinsPseudopodiaPublicationsReceptor SignalingRegulationResearchResolutionResourcesRoleShapesSignal PathwaySignal TransductionSignaling ProteinSpainStromal CellsSystemTechniquesTertiary Protein StructureTrainingTranslatingTumor Cell InvasionTumor Cell MigrationUniversitiesWorkXenograft Modelbeta Actincancer cellcareer developmentcell behaviorcell motilitydesigndrug developmentexperimental studyextracellularhuman diseaseimaging systemimprovedin vitro Modelin vivoin vivo imaginginnovationinstructorinterestintravital imagingmacrophagemembermigrationmultidisciplinarymultiphoton imagingneoplastic cellnovelpost-doctoral trainingpublic health relevancerecruitspatiotemporaltargeted treatmenttumortumor microenvironmenttumor progression
项目摘要
DESCRIPTION (provided by applicant): Dr. Bravo-Cordero obtained his degree in biology at Autonoma University of Madrid, Spain. After completing his doctorate work, in which he used high-resolution confocal imaging techniques to study cancer cell biology, he continued his training in the area of state-of-the-art imaging in the laboratories of Dr. John Condeelis and Dr. Louis Hodgson. During postdoctoral training, Dr. Bravo-Cordero focused on understanding how RhoGTPases are spatiotemporally regulated during breast cancer cell migration and invasion. He w a s trained in techniques such as FRET microscopy as well as FRET biosensors imaging to address these questions. His work to date has resulted in 23 peer-review publications. Recent work has shown that metastasis of tumor cells is affected by the extracellular microenvironment in which the cells are located. In order to understand the mechanisms of tumor cell metastasis and the activation of the intracellular signals, high-resolution microscopy techniques like multiphoton imaging is an ideal modality to observe tumor cells inside their physiological environment. In vitro models are limited in their complexity, thus using animal models that recapitulate the disease, will be a more effective way to address questions that could not be addressed with in vitro systems. Dr. Bravo Cordero has been trained in techniques such as multiphoton in vivo imaging and FRET microscopy in order to understand cell signaling in vivo. This training makes it possible to lead a laboratory that integrates animal models, multiphoton imaging and FRET- biosensor imaging in vivo to understand mechanisms of tumor cell metastasis. Environment: Advisory committee of the PI included Dr. John Condeelis, Co-Chair of Anatomy Department and Biophotonic Center at Einstein. His lab and the Center create a multidisciplinary environment focused on answering mechanisms of human diseases, such as cancer, through use of microscopy. The Center is well known for its shared imaging resources and Innovation Laboratory, in which new microscopes are custom-built to accommodate specific needs of different projects. Other members of the advisory committee are: Dr. Louis Hodgson, he is an expert in FRET biosensor imaging and FRET biosensor design and Dr. Richard Stanley, he is an expert on macrophages biology and CSF-1 receptor signaling, he also studies F-Bar domain proteins in the context of chemotaxis. Dr. Richard Stanley is also a renowned mentor. Einstein is an institution that values collaboration and insists on career development of postdoctoral fellows, instructors and junior faculty. Research: Motility and invasion are crucial steps for multiple processes from development and homeostasis to metastasis. In order for cells to move, they must form membrane extensions to propel themselves through the extracellular matrix. Thus, understanding the molecular pathways that drive spatiotemporal control of protrusion formation is a fundamental question to be answered. The tumor microenvironment is composed of collagen fibers, stromal cells and blood vessels that, in combination, will influence the motility behavior of tumor cells. RhoGTPases are master regulators of cytoskeleton dynamics being tightly regulated by multiple proteins. A family of proteins containing Bar-domains acts at the interface between membrane plasticity and RhoGTPases signaling, and these proteins have emerged as important regulators of GTPases and membrane shape. The final migratory output of a tumor cell will be dictated by the extracellular matrix conditions and that will be translated through a complex signaling system that include BAR proteins and RhoGTPases to induce cytoskeleton rearrangements. Signaling pathways through RhoGTPases have been widely studied in vitro, but the mechanism that regulates GTPase activation in vivo is still unknown. To address the link between tumor microenvironment, motility behavior and RhoGTPases signaling is necessary to combine multiphoton intravital imaging with FRET-biosensors imaging. Two different types of protrusion have been shown to mediate tumor invasion, lamellipodia and invadopodia. To date, it is not clear the contribution of each of them to motility in vivo and tumor intravasation. My preliminary results have shown that tumor cells expressing β-actin-TagRFP-T as a marker for pseudopodia protrusions show that cell extending membrane protrusion in order to move have enriched in action. Aim 1 will explore how signaling mediated by the GTPases RhoA and RhoC determine the formation of invadopodia and pseudopodia protrusions depending on the extracellular matrix context. By using FRET biosensors in vivo, the activation pattern of these GTPases will be analyzed in these different protrusions. In preliminary experiments the Bar protein srGAP1, which regulates RhoGTPases, is recruited to pseudopodia and invadopodia protrusions of tumor cells. Aim 2 will explore the role of srGAP1 in establishing lamellipodia and invadopodia protrusions through RhoGTPases regulation. Aim 3 will explore the role of srGAP1 in tumor cell dissemination and metastasis in vivo. Results of this study will lead to a better understanding of the interplay among microenvironment components, GTPase signaling and cytoskeleton rearrangements during tumor progression and the results will be used to improve diagnosis and treatment of early metastasis.
描述(由申请人提供):Bravo-Cordero博士在西班牙马德里自治大学获得生物学学位。在完成博士学位工作后,他使用高分辨率共聚焦成像技术研究癌细胞生物学,他继续在John Condeelis博士和Louis Hodgson博士的实验室进行最先进成像领域的培训。在博士后培训期间,Bravo-Cordero博士专注于了解RhoGTPases在乳腺癌细胞迁移和侵袭过程中的时空调控。他接受了FRET显微镜和FRET生物传感器成像等技术的培训,以解决这些问题。迄今为止,他的工作已经产生了23篇同行评审出版物。 最近的研究表明,肿瘤细胞的转移受细胞所处的细胞外微环境的影响。为了了解肿瘤细胞转移的机制和细胞内信号的激活,高分辨率显微镜技术如多光子成像是观察肿瘤细胞在其生理环境中的理想模式。体外模型的复杂性有限,因此使用重现疾病的动物模型将是解决体外系统无法解决的问题的更有效方法。Bravo Cordero博士接受过多光子体内成像和FRET显微镜等技术培训,以了解体内细胞信号传导。该培训使其能够领导一个实验室,该实验室将动物模型,多光子成像和FRET-生物传感器成像整合在体内,以了解肿瘤细胞转移的机制。环境:PI的咨询委员会包括John Condeelis博士,他是爱因斯坦解剖学系和生物光子中心的联合主席。他的实验室和中心创建了一个多学科的环境,专注于通过使用显微镜来回答人类疾病(如癌症)的机制。该中心以其共享的成像资源和创新实验室而闻名,其中新的显微镜是定制的,以满足不同项目的特定需求。咨询委员会的其他成员是:Louis Hodgson博士,他是FRET生物传感器成像和FRET生物传感器设计方面的专家; Richard Stanley博士,他是巨噬细胞生物学和CSF-1受体信号传导方面的专家,他还研究了趋化性背景下的F-Bar结构域蛋白。理查德·斯坦利博士也是一位著名的导师。爱因斯坦是一个重视合作的机构,并坚持博士后研究员,导师和初级教师的职业发展。研究:运动和侵袭是从发育和稳态到转移的多个过程的关键步骤。为了使细胞移动,它们必须形成膜延伸以推动自己穿过细胞外基质。因此,了解驱动突起形成的时空控制的分子途径是一个需要回答的基本问题。肿瘤微环境由胶原纤维、基质细胞和血管组成,它们的组合将影响肿瘤细胞的运动行为。RhoGTP酶是细胞骨架动力学的主要调节剂,由多种蛋白质紧密调节。含有Bar结构域的蛋白质家族在膜可塑性和RhoGTPases信号传导之间起作用,并且这些蛋白质已经成为GTPases和膜形状的重要调节剂。肿瘤细胞的最终迁移输出将由细胞外基质条件决定,并且将通过包括BAR蛋白和RhoGTP酶的复杂信号传导系统翻译以诱导细胞骨架重排。通过RhoGTPases的信号传导途径已在体外被广泛研究,但调节体内GTPases活化的机制仍然未知。为了解决肿瘤微环境,运动行为和RhoGTPases信号之间的联系,联合收割机结合多光子活体成像与FRET生物传感器成像是必要的。两种不同类型的突起已被证明介导肿瘤侵袭,板状伪足和侵入伪足。迄今为止,尚不清楚它们中的每一种对体内运动和肿瘤内渗的贡献。我的初步研究结果表明,表达β-actin-TagRFP-T作为伪足突起标志物的肿瘤细胞表明,细胞为了移动而延伸膜突起具有富集作用。目的1将探讨由GTP酶RhoA和RhoC介导的信号传导如何决定取决于细胞外基质背景的侵袭伪足和伪足突起的形成。通过在体内使用FRET生物传感器,这些GTP酶的激活模式将在这些不同的突起中进行分析。在初步实验中,调节RhoGTP酶的Bar蛋白srGAP 1被募集到肿瘤细胞的伪足和侵袭伪足突起。目的2探讨srGAP 1通过RhoGTPases调控在板状伪足和侵袭伪足突起形成中的作用。目的3探讨srGAP 1在体内肿瘤细胞播散和转移中的作用。这项研究的结果将导致更好地了解肿瘤进展过程中微环境成分,GT3信号传导和细胞骨架重排之间的相互作用,其结果将用于改善早期转移的诊断和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jose Javier Bravo-Cordero其他文献
Jose Javier Bravo-Cordero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jose Javier Bravo-Cordero', 18)}}的其他基金
IMAT-ITCR Collaboration: Artificial intelligence enhanced breast cancer dormancy cell classification-based organelle-morphology and topology
IMAT-ITCR 合作:人工智能增强乳腺癌休眠细胞分类的细胞器形态和拓扑
- 批准号:
10884760 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Intersectional genetics-based biosensors for dormant cancer cells
基于交叉遗传学的休眠癌细胞生物传感器
- 批准号:
10612300 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Recording the natural history of cancer progression using a Crainbow model of HER2+ cancer
使用 HER2 癌症的 Crainbow 模型记录癌症进展的自然史
- 批准号:
10630320 - 财政年份:2022
- 资助金额:
$ 19.22万 - 项目类别:
Recording the natural history of cancer progression using a Crainbow model of HER2+ cancer
使用 HER2 癌症的 Crainbow 模型记录癌症进展的自然史
- 批准号:
10437462 - 财政年份:2022
- 资助金额:
$ 19.22万 - 项目类别:
Defining the role of type III collagen and the collagen-binding receptor DDR1 in metastatic dormancy
定义 III 型胶原和胶原结合受体 DDR1 在转移休眠中的作用
- 批准号:
10263927 - 财政年份:2020
- 资助金额:
$ 19.22万 - 项目类别:
Defining the role of type III collagen and the collagen-binding receptor DDR1 in metastatic dormancy
定义 III 型胶原和胶原结合受体 DDR1 在转移休眠中的作用
- 批准号:
10439836 - 财政年份:2020
- 资助金额:
$ 19.22万 - 项目类别:
Defining the role of type III collagen and the collagen-binding receptor DDR1 in metastatic dormancy
定义 III 型胶原和胶原结合受体 DDR1 在转移休眠中的作用
- 批准号:
10653992 - 财政年份:2020
- 资助金额:
$ 19.22万 - 项目类别:
Protrusion plasticity during in vivo tumor cell migration
体内肿瘤细胞迁移过程中的突出可塑性
- 批准号:
9321473 - 财政年份:2016
- 资助金额:
$ 19.22万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.22万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.22万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.22万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.22万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.22万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.22万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.22万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.22万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.22万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.22万 - 项目类别:
Research Grant